Design for a better *futur*e /

Taylor Construction Group Pty Ltd

Preliminary Site Investigation

Milton Ulladulla Hospital, 106 Princes Highway, Milton New South Wales 2538

<u>\\S</u>D

June 2025 Confidential

Question today Imagine tomorrow Create for the future

Preliminary Site Investigation Milton Ulladulla Hospital, 106 Princes Highway, Milton New South Wales 2538

Taylor Construction Group Pty Ltd

WSP Level 27, 680 George Street Sydney NSW 2000 GPO Box 5394 Sydney NSW 2001

Tel: +61 2 9272 5100 Fax: +61 2 9272 5101 wsp.com

Rev	Date	Details
A01	6 June 2025	Draft
А	10 June 2025	Final

	Name	Date	Signature
Prepared by:	Sally Gartland	10 June 2025	Schortland
Reviewed by:	Shane Doyle	10 June 2025	Share Dyle.
Approved by:	Shane Doyle	10 June 2025	Share Dyle.

WSP acknowledges that every project we work on takes place on First Peoples lands.

We recognise Aboriginal and Torres Strait Islander Peoples as the first scientists and engineers and pay our respects to Elders past and present.

This document may contain confidential and legally privileged information, neither of which are intended to be waived, and must be used only for its intended purpose. Any unauthorised copying, dissemination or use in any form or by any means other than by the addressee, is strictly prohibited. If you have received this document in error or by any means other than as authorised addressee, please notify us immediately and we will arrange for its return to us.

wsp

Table of contents

Executive summaryiv		
1	Introduction1	
1.1	Background1	
1.2	Objectives1	
1.3	Scope of work 1	
2	Site location and setting3	
2.1	Site location and identification3	
2.2	Surrounding land uses	
2.3	Physical description4	
2.4	Geology, soils and hydrogeology5	
3	Site history review6	
3.1	Historical aerial photographs6	
3.2	Historical businesses8	
3.3	Previous environmental investigations9	
3.3.1 3.3.2	WSP 2024	
3.4	Supplementary historical information9	
3.5	Site history summary10	
4	Regulatory review11	
4.1	NSW environment protection authority11	
4.1.1	CLM Act notices	
4.1.2 4.1.3	Notifications under Section 60 of the CLM Act	
4.1.4	NSW EPA notices11	
4.1.5	Former gasworks12	
4.2	Waste management facilities12	
4.3	PFAS management programs12	
4.4	Heritage registers 12	
4.5	Regulatory review summary12	
5	Limited soil sampling program13	

wsp

CONTENTS (Continued)

5.2	Scope	13
5.3	Site walkover inspection	13
5.4	Methodology	14
5.5	Soil assessment criteria	15
5.6	Fieldwork observations	16
5.7	Laboratory analytical results	16
6	Conceptual site model 1	7
7	Summary	0
8	Conclusions and recommendations	1
9	Limitations	2
9.1	Permitted purpose	. 2
9.2	Qualifications and assumptions	. 2
9.3	Use and reliance	. 2
9.4	Disclaimer	. 3
References4		

List of tables

Table 2.1	Summary of general site information	3
Table 2.2	Surrounding land use summary	3
Table 2.3	Physical description summary	4
Table 2.4	Geology, soil and hydrogeology summary	5
Table 3.1	Aerial photograph review	6
Table 3.2	Summary of potentially contaminating historical business activities surrounding the site	9
Table 4.1	Delicenced activities formerly regulated by the EPA (within 1 km of the site)	11
Table 4.2	EPA notices (within 1 km of the site)	12
Table 4.3	State heritage register listings	12
Table 5.1	Samples collected	15
Table 6.1	Preliminary Conceptual Site Moel	18

wsp

CONTENTS (Continued)

List of appendices

Appendix A Figure Appendix B Land Insight Report Appendix C Photographic Log Appendix D Borelogs Appendix E Laboratory Certificates Appendix F Analytical Tables

Executive summary

WSP Australia Pty Ltd (WSP) has been commissioned by Taylor Construction Group Pty Ltd, on behalf of Health Infrastructure, to undertake a preliminary site investigation (PSI) of the Milton Ulladulla Hospital site located at 106 Princes Highway, Milton, NSW to inform the preparation of a Review of Environmental Factors (REF) for the Milton Hospital Upgrade project. The proposed upgrade includes an expansion of the existing cancer care centre and an upgrade of medical imaging facilities.

The PSI included a desktop assessment of the site and a limited shallow soil sampling and analysis program.

The site has been occupied by Milton Ulladulla Hospital since 1967, with aerial imagery showing progressive development of hospital infrastructure from that time onward. Major redevelopment works, including extensions to the main hospital building and ancillary structures, occurred between the early 2000s and 2010s.

The surrounding land use has transitioned from partially developed land in the 1950s to predominantly low density residential development by the early 2000s. Community and commercial infrastructure have also been established within 200 metres of the site.

The site, and nearby surrounding properties, are not subject to current or former contamination related notices issued by the NSW Environment Protection Authority.

The potential presence of fill on the site was noted during the site inspection, and confirmed by the limited soil investigation program. No visual or olfactory evidence of contamination of shallow soils was identified by the intrusive works.

It is considered unlikely that current and former activities at the site, or from nearby commercial sites, have resulted in gross contamination of the Milton Ulladulla Hospital site. Analytical results for the shallow soil samples collected from the site as part of the investigations were below the assessment criteria adopted.

Based on the results of the investigations performed it is considered the site is suitable for ongoing use as a hospital. However, the following recommendations are made:

- A Construction Environmental Management Plan (CEMP), including an unexpected finds protocol, be implemented if the proposed upgrade includes ground disturbance works.
- Waste, including excess spoil, generated by the upgrade must be disposed in accordance with regulatory guidance following classification in accordance with the NSW EPA's Waste classification guidelines Part 1: Classifying waste (EPA 2014).

1 Introduction

1.1 Background

WSP Australia Pty Ltd (WSP) was engaged by Taylor Construction Group Pty Ltd, acting on behalf of Health Infrastructure, to undertake a preliminary site investigation (PSI) of the Milton Hospital (the site) to inform the preparation of a Review of Environmental Factors (REF) for the Milton Hospital Upgrade project. The REF is required to support planning and approvals for the project located at 106 Princes Highway, Milton, New South Wales 2538. The site encompasses Lot 1 in DP 1127802 (see attached Figure 1 in Appendix A.

The purpose of the PSI was to provide a more detailed understanding of potential for contamination to exist at the site, determine the suitability for ongoing land use, and consider further assessment, management, or remediation options (if required). WSP's scope of work includes the review of publicly available maps, databases, historical aerial photography, and a site inspection with limited sampling. The site inspection and limited sampling was completed by WSP on 27 May 2025.

1.2 Objectives

The objectives of the investigation were to:

- Evaluate the potential for site contamination on the basis of historic land uses, and anecdotal and documentary evidence of possible pollutant sources.
- Identify indicators of potential contamination at the site based on observations made during the site inspection, and the analytical results of the limited sampling program.
- Provide a preliminary assessment of the condition of the site and potential for contamination.
- Assess the site's suitability for ongoing sensitive land use and potential risks to receptors.
- Prepare a preliminary site investigation report, with reference to the NSW EPA, 2020 Contaminated Land Guidelines: Consultants reporting on contaminated land presenting the environmental status of the site with respect to potential contamination.

1.3 Scope of work

- Review of current Shoalhaven City Council Local Environment Plan (LEP) maps to assess potential restriction to land development.
- A search of historical aerial photographs in order to review previous site use and the historical sequence of land development in the neighbouring area.
- Review of available previous environmental reports pertaining to the site (where available).
- Review of existing licences, notices, or orders under the *Protection of the Environment Operations Act 1997* (the *POEO Act*) or the *Contaminated Land Management Act 1997* (the *CLM Act*) for the site and/or surrounding sites.
- Review of the NSW Office of Water databases for bores located within 500 m radius of the site through the groundwater bore database.
- Review of the physical site setting including topography, geology (including acid sulfate soil risk), hydrology, hydrogeology, and potential sensitive receptors on or in the vicinity of the site.
- Completion of a site interview with the relevant site representatives (where possible).

- A site walkover and inspection to identify indicators of potential contamination at the site.
- Excavation of four (4) boreholes using a hand auger.
- Collection of shallow surficial soil samples from each of the four (4) borehole locations.
- Laboratory analysis of up to ten (10) shallow soil samples for the following analytical suite:
 - Total recoverable hydrocarbons (TRH).
 - Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN).
 - Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc).
 - Polycyclic aromatic hydrocarbons (PAH).
 - Per- and polyfluoroalkyl substances (PFAS).
 - Asbestos.
- Comparison of analytical results against applicable site assessment criteria.
- Preparation of this PSI report including comment on the contamination status of the site, and the provision of recommendations for further works (if required).

An assessment of groundwater quality on the site was not performed.

2 Site location and setting

2.1 Site location and identification

The general site identification details are provided in Table 2.1.

Table 2.1	Summarv	of	deneral	site	information
	Carriery	~	gonorai	0.00	innonnation

Торіс	Details
Site address	106 Princes Highway, Milton, New South Wales 2538
Site identification	Lot 1 in DP 1127802
Site occupier	Milton Ulladulla Hospital (NSW Health - Illawarra Shoalhaven Local Health District)
Site area	The area of the site is approximately 0.9 ha.
Zoning	SP2 – Health Services Facilities
Current site use	Hospital – Patient treatment and care
Development age	Approximately 58 years
Proposed land use	Ongoing hospital / health care activities.

2.2 Surrounding land uses

A summary of the land uses and zoning surrounding the site are provided in Table 2.2.

Direction	Land use and zoning
North	The site is bordered to the north by Gumley Lane, beyond which are low density residential developments (zoned R2 – Low Density Residential). Approximately 110 metres further north is vacant, grass covered land with sparse vegetation (zoned R1 – General Residential, transitioning to RU1 – Primary Production further north). Milton Swimming Centre (zoned RE1 – Public Recreation) is approximately 125 metres north-northwest of the site, while Milton Public School (zoned SP2 – Educational Establishment) is situated approximately 250 metres north-west of the site.
South	The site is bordered to the south by Princes Highway, beyond which are commercial facilities (zoned E1 – Local Centre). These include health services (such as medical centres, a pathology clinic, and a massage clinic), a vet, and a farm retail shop. Approximately 85 metres further south, land use transitions to low density residential developments (zoned R2 – Low Density Residential), with one lot, located approximately 45 metres to the southwest of the site, comprising town houses (zoned R3 – Medium Density Residential). Uniting Church is situated approximately 170 metres to the south of the site (zoned SP2 – Place of Public Worship).
East	Low density residential developments exist to the east of the site (zoned R2 – Low Density Residential), beyond which is an aged care facility (IRT Sarah Claydon Aged Care Centre), approximately 185 metres from the site (zoned R1 – General Residential).

Table 2.2 Surrounding land use summary

Direction	Land use and zoning
	Low density residential developments exist to the west of the site (zoned R2 – Low Density Residential), beyond which is the Milton commercial district (zoned E1 – Local Centre), including multiple commercial facilities such as retail stores, a hotel, cafes and restaurants. An Anglican Church and Buddhist Temple are situated approximately 105 metres and 205 metres (respectively) to the west of the site (zoned SP2 – Place of Public Worship).
	A service station (Caltex) is located approximately 100 metres to the west of the site.

2.3 Physical description

A summary of the physical characteristics of the site is presented in Table 2.3 below. Photographs taken as part of the site inspection show the physical description of the site and are provided in Appendix C.

Table 2.3 Physical description summary

Торіс	Summary
Site configuration	The site is located on the northern side of Princes Highway and extends northward to Gumley Lane. The site encompasses a single lot, occupied by Milton Ulladulla Hospital.
Site features	Site features include the main Milton Ulladulla Hospital building, centrally located within the site, along with associated ancillary buildings and structures, sealed asphalt access roads and car parks, grass covered areas, and landscaped gardens.
	Ancillary buildings include the Milton Ulladulla Community Cancer Services Centre building, situated in the south-western corner of the site, the building located at the south- eastern corner of the site (building identifier MUH-F), and the building positioned diagonally approximately 25 metres from the north-eastern corner of the site (building identifier MUH-C), adjacent to the main hospital building. A corrugated iron carport (including a storage shed) is located along the eastern boundary (to the east of MUH-C), with a concrete structure (building identifier MUH-E) immediately to its south. According to signage this concrete structure is used as a flammable substance storage building.
	Sealed asphalt access roads and car parks are distributed throughout the hospital complex, with two driveways providing access from the northern side of the site and two from the southern side, serving as the main hospital entrance and the ambulance bay.
Percentage coverage of the site (approximate)	Buildings: 41% Asphalt sealed roads / parking areas and concreted hardstand: 31% Bare ground/landscaping: 27%
Topography	The site generally slopes down gradient from the southern boundary toward the north, sitting at an elevation of approximately 70 - 78 metres Australian Height Datum (mAHD).
Site drainage	Stormwater is managed by onsite stormwater drains located at various points across the site and is expected to drain to the municipal drainage system, discharging toward the north.
Surface water	The nearest waterway to the site is an unnamed creek located approximately 175 metres to the north of the site. The creek, downgradient of the site, flows towards the north, converging with several other unnamed creeks before ultimately discharging into Narrawallee Creek approximately 2.5 km to the northeast of the site. A farm dam is located on the watercourse approximately 760 m north northeast of the site.

2.4 Geology, soils and hydrogeology

A review was performed by a third party to identify geologic and hydrogeologic conditions in the vicinity of the site. This information is contained within a project specific report in Appendix B and has been summarised in Table 2.4 below.

Торіс	Summary
Regional geology	The site is underlain by Milton Monzonite of the Mesozoic Era, primarily consisting of porphyritic monzonite.
	There is a low potential for naturally occurring asbestos to be present at the site.
Soil	Site soils are classified as Kurosols, associated with the Brown Podzolic Soils group. They are typically acidic, with predominantly brownish to yellowish colouring.
	According to acid sulfate soil risk mapping as the site is not located in an area with known acid sulfate soils (ASS). The nearest mapped occurrence is approximately 1.1 km to the north-east of the site and is classified as $L2 - low$ probability of ASS occurring at depths of $1 - 3$ m below ground surface. However, according to ASS planning sheets of the Shoalhaven Local Environment Plan 2014 (the LEP) the site is located in area classified as Class 5 Acid Sulfate Land.
Regional hydrogeology/ groundwater use	The area's hydrogeology is characterised by fractured or fissured rock formations, with extensive aquifers of low to moderate productivity.
	No registered groundwater bores are present on the site. The nearest groundwater bore (GW031037) is located approximately 1.5 km south-east of the site and is utilised for unknown purposes. No information pertaining to the standing water level was available, suggesting limited to no use of groundwater within the vicinity of the site.

Table 2.4 Geology, soil and hydrogeology summary

3 Site history review

3.1 Historical aerial photographs

Available historical aerial photographs for the site and surrounding area from 1959, 1970, 1972, 1975, 1979, 1987, 1991, 1997, 2004, 2012, 2018, 2019, 2021, 2023 and 2025 were obtained via a third party. Copies of the aerial photographs referenced above are included in Appendix B.

The aerial photograph review was conducted to develop a general history of the development of the site and surrounding properties (within approximately 200 m). Some of these photographs were taken from relatively high altitudes (generally resulting in photographic scales of more than 1:16,000) and hence the level of detail that can be interpreted for the site is limited. Information derived from historical aerial photography is described in chronological order in Table 3.1 below.

	Achar photograph forlow	
Year	Site	Surrounding area
1959	Due to the low resolution of the photograph detailed comments on the site were not possible; however, buildings may have been present.	The area immediately north of the site appeared to consist of vacant, grass covered land, while the land to the south, east and west was developed. Areas to the north-west and north-east appeared to have been partially developed.
		The currently existing Princes Highway, Wolseley Street, Church Street and Gordon Street had been constructed. Buildings were present on the southern side of Princes Highway to the south of the site, and on either side of Princes Highway to the east of the site.
		Construction related earthworks were evident approximately 200 metres to the west of the site, along Princes Highway.
1970	The existing main hospital building was present on the site, with several smaller surrounding structures distributed across the hospital complex.	Previously observed construction related earthworks to the west of the site, along Princes Highway, had been replaced by completed commercial buildings.
	An unsealed access road appeared to be present in the south-eastern portion of the site, leading from the southern boundary toward the centre of the site, where it terminated. It appeared to connect with the south and east wings of the main hospital building. The alignment of this road was consistent with the current layout of the existing emergency vehicle entry point.	
1972	No significant changes.	No significant changes.
1975	A number of the currently existing ancillary buildings had been constructed. This included the building located at the south-western corner of the site (currently the Milton Ulladulla Community	The currently existing Graham Street had been constructed. A small area of ground disturbance was noted approximately 100 metres south of the site, at the rear of a low density residential property.

Table 3.1Aerial photograph review

Cancer Services Centre), the MUH-C building, the

Year	Site	Surrounding area
	MUH-F building, and the MUH-E building. The low resolution of earlier photographs made it difficult to confirm whether these structures were present in previous photographs.	
	The small square building to the north of the west wing of the main hospital building (still existing today) was present, as well as the existing car port adjacent to the eastern boundary.	
	A rectangular building and a smaller square structure (no longer present today) were visible to the west of the main hospital building. There was also a separate building to the south of the west wing of the main hospital building.	
1979	Due to the low resolution of the photograph detailed comments on the site were not possible, however there did not appear to have been significant changes from the 1975 image.	A public swimming centre (the present day Milton Swimming Centre) had been formed approximately 125 metres to 200 metres to the north-west of the site. The existing Gumley Lane (adjacent to the northern boundary of the site) had been formed.
1987	An area of ground disturbance was visible along the northern boundary of the site (on the western side). The MUH-F building appeared to have been extended, as had the building south of the hospital's west wing, connecting with the hospitals south wing.	Construction of a road (and some medium to large sized residential buildings) had occurred approximately 200 metres to the east of the site (likely the present day aged care facility, IRT Sarah Claydon Aged Care Centre). Large lot residential developments had been constructed approximately 200 metres to the north- east of the site.
1991	No significant changes.	Low density residential developments had been constructed to the south-east of the site.
1997	An extension had been constructed on the eastern side of the hospital's south wing. An access road had been formed on the western	Construction of townhouses (a medium density residential development) had begun approximately 45 metres to the south-west of the site.
	part of the site, replacing the small square building first observed in the 1975 photograph. This access track ran from the southern boundary towards the northern boundary, with an additional curved track connecting the northern part of this newly formed track to the northern side of the hospital. This access road was also being utilised for vehicle parking.	Beyond 200 metres to the south-east of the site, there was evidence of road construction. Otherwise, no significant changes.
2004	The access road along the western boundary had been sealed. There was possibly road base (or similar) material stockpiled in the south-eastern corner of the site, likely relating to the sealing of the access road on the western part of the site. It appeared that several large items were being stored	Any remaining undeveloped land within 200 metres to the south of the site had been developed into low density residential properties.

Year	Site	Surrounding area
	 along the northern boundary of the site, potentially associated with the road sealing works. Tree canopy coverage had significantly increased in the northern portion of the site. Vehicle parking across the site had also increased. 	
2012	 Significant changes had occurred to the main hospital building, including an extension connecting the east and south wing, an extension connecting the west and south wing, and an extension from the central part of the hospital towards the north. The building at the south-western corner of the site had also undergone what appeared to be an extension and renovation. A renovation had also occurred to the MUH-F building. 	No significant changes.
	The rectangular building, first observed in the 1975 photograph, has been demolished and replaced with an extension to the access road (which was first observed in the 1997 photograph). This access road was consistent with the current layout.	
2018	 A renovation had occurred to the main hospital building, and extensions had been added to the northern part of the main hospital building. The MUH-C building had been renovated. A pergola was added north of the MUH-F building. 	With areas to the north-east beyond 200 metres from the site now developed (low density residential developments), the surrounding area was largely consistent with the current layout.
2019	No significant changes.	No significant changes.
2021	No significant changes.	No significant changes.
2023	A small square structure had been constructed north of the hospitals west wing. A rectangular structure (likely associated with temporary works) had been constructed near the centre of the southern boundary.	No significant changes.
2025	The rectangular structure, previously observed near the centre of the southern boundary in the 2023 photograph, was no longer present. No other significant changes were observed.	No significant changes.

3.2 Historical businesses

A search of historical business directories was performed by a third party to identify historical occupants of the site and properties in the vicinity of the site. This information is contained within a project specific report in Appendix B, and notable potentially contaminating historical business activities within 100 metres of the site have been summarised in Table 3.2 below.

Table 3.2 Summary of potentially contaminating historical business activities surrounding the site

Business name	Activity	Address
Arjan Motors / Nixon R J (Bob)	Motor Panel Beaters	131-135, Bombay Street, Milton
		Approximately 50 m south of the site
Matthews Service Station	Motor Service Stations & Garages	127 Princes Hwy, Milton
		Approximately 50 m south of the site
Consolidated Motors Pty Ltd	Motor Cars & Trucks—Used	123 Princes Hwy, Milton
		Approximately 70 m southwest of the site

3.3 Previous environmental investigations

WSP was provided with the following environmental reports pertaining to the subject site:

- WSP Pty Ltd, Targeted Hazardous Materials Report and Register: Milton Ulladulla Hospital 106 Princes Highway, Milton, NSW, 2538 (WSP, 2024).
- WSP Pty Ltd, Technical Scope of Works Report Asbestos Remediation Works: Milton Ulladulla Hospital 106 Princes Highway, Milton, NSW, 2538 (WSP, 2025).

3.3.1 WSP 2024

The report completed in 2024 by WSP (WSP, 2024) documented the findings of a targeted hazardous materials investigation. This investigation involved a site inspection and limited sampling and analysis of accessible areas, including site soils. The findings from this report pertinent to the current investigation include the identification of surficial asbestos containing material in the form of fibre cement sheet fragments and debris observed on the soil surface within the subfloor tunnels of the Main Building.

3.3.2 WSP 2025

The report completed in 2025 by WSP (WSP, 2025) outlined the remediation methodology for the removal of non-friable asbestos impacted soil located within the subfloor tunnels below the Main Building.

3.4 Supplementary historical information

The historical aerial photograph review was supplemented with a search of publicly available online sources to provide additional historical context on the development of the Milton Ulladulla Hospital site. Online sources indicate that the hospital was originally established in 1908 and relocated to the current site in 1967¹. In 2005, a fire² destroyed the cottage in the south-western corner of the site, formerly known as 'Minto House' (constructed c1860-1870). The building was rebuilt in 2007 as the current Community Cancer Services Centre. These events correspond with changes observed in aerial imagery and help clarify site development during periods of limited image resolution.

¹ <u>Milton Ulladulla Hospital | Illawarra Shoalhaven Local Health District (ISLHD)</u>

² Our Story — Cancer Support Foundation

3.5 Site history summary

The site has been occupied by Milton Ulladulla Hospital since 1967, with aerial imagery showing progressive development of hospital infrastructure from that time onward. Construction of the present day hospital buildings had commenced by 1970, with further expansion occurring through the 1970s and 1980s. Major redevelopment works, including extensions to the main hospital building and ancillary structures, occurred between the early 2000s and 2010s.

Since 1967, the site has remained in continuous use as the Milton Ulladulla Hospital. A review of publicly available online sources indicates that the hospital was originally established in 1908 at another premises and began occupying the current site in 1967. The weatherboard cottage currently occupied by the Community Cancer Services Centre was originally constructed c1860-1870 and was rebuilt in 2007 following a fire.

The surrounding land use has transitioned from partially developed land in the 1950s to predominantly low density residential development by the early 2000s. Community and commercial infrastructure, including the Milton commercial complex along Princes Highway to the west of the site, a swimming centre (the present day Milton Swimming Centre) and an aged care facility (the present day IRT Sarah Claydon Aged Care Centre), were also established within 200 metres of the site.

4 Regulatory review

As part of the PSI the following published information sources were consulted in respect of the site:

State databases including:

- Online records held by the NSW Environment Protection Authority (EPA), including:
 - The record of notices issued under the CLM Act.
 - The public register maintained under Section 308 of the POEO Act; and
 - The list of sites notified to the EPA under Section 60 of the CLM Act.
- Records held by government and statutory bodies relating to investigation and management of per- and polyfluoroalkyl substances (PFAS).
- Heritage registers.

To facilitate the above searches of the EPA records a third party was engaged to provide the relevant information. This information is contained within a project specific report in Appendix B.

4.1 NSW environment protection authority

4.1.1 CLM Act notices

The NSW EPA's register for contaminated land notices under the *CLM Act* does not identify any premises within 2 km of the site as being subject to current or prior notices.

4.1.2 Notifications under Section 60 of the CLM Act

The NSW EPA maintains a "List of NSW contaminated sites notified to the EPA" under Section 60 of the *CLM Act*. Sites on this list indicate that the notifiers consider that the sites are contaminated and warrant reporting to the NSW EPA. The contamination at the site may or may not be significant enough to warrant regulation by the EPA and the EPA reviews relevant site information before making a determination as to whether or not the site warrants regulation. The search indicated that there were no premises within 1 km of the site that had been identified as a contaminated site.

4.1.3 EPLs under the POEO Act

The NSW EPA maintains a public register of premises subject to an Environment Protection Licence (EPL) under the POEO Act. While the search indicated that there were no current licenced activities within 1 km of the site, the search identified one premises with former licenced activities no longer regulated by the EPA. This site and the associated activity are detailed in Table 4.1 below.

Organisation	Address	Activity	Direction and Distance
Forest Corporation of New	Not available – Applies to a	Logging Operations	Not available – Applies to a
South Wales	larger area without specific		larger area without specific
	definition (forests).		definition (forests).

 Table 4.1
 Delicenced activities formerly regulated by the EPA (within 1 km of the site)

4.1.4 NSW EPA notices

The NSW EPA maintains a list of Penalty Notices, Clean up Notices and Prevention Notices. A search of the database indicated that there were no notices on the site and one notice for premises within 1 km of the site. This is detailed in Table 4.2 below.

Organisation	Address	Notice Type	Offence and date	Direction and Distance
Forest Corporation of New South Wales	Southern Region (S.R.) Means the State Forests and Crown - Timber Lands (Excluding Plantations)	Clean Up Notice	s.91 Clean Up Notice	Not available – Applies to a larger area without specific definition (forests).

4.1.5 Former gasworks

A review of the information contained within Appendix B indicates that there are no premises within 2 km of the site which are registered former gasworks sites. Waste management facilities

A review of the information contained within Appendix B indicates that there are no within 2 km of the site which are registered on the National Waste Management Site Database.

4.3 PFAS management programs

A review of the information contained within Appendix B indicates that there are no premises within 2 km of the site which are listed on the NSW EPA, Defence and Airservices Australia PFAS investigation and management programs.

WSP performed a review of register of NSW Rural Fire Service (FRS) and NSW Fire and Rescue (F&R) sites which are the subject of PFAS assessments. Based on the review, performed on 5 June 2025, there are no RFS or F&R sites subject to an assessment within 10 km of the site.

4.4 Heritage registers

A review of the information contained within Appendix B indicates that there are no National or State heritage listings for the site or within 200 m of the site. The Shoalhaven LEP identifies one item of local heritage significance on the site, and sixteen heritage items within 200 metres of the site. The onsite heritage listing is identified in Table 4.3.

Table 4.3	State heritage	register listings

Name	Address	Lot	Listing number
Federation weatherboard residence	106 Princes Highway,	Lot 1, DP 1127802	281
and well, "Garrad House" –	Milton NSW 2538		
Federation period farmhouse			

One of the historical references viewed in Section 3.4 referred to a heritage listed "bee hive well" associated with the circa 1860s/1870s cottage destroyed by fire. It is uncertain if the beehive well is the well associated with the federation Garrad House.

4.5 Regulatory review summary

Based on review of available regulatory databases, there has been no EPA notices for, or licensed activities at the site. One formerly licensed activity (no longer regulated) has occurred in the wider area surrounding the site, associated with historical logging activities.

5 Limited soil sampling program

5.1 Purpose

WSP undertook a limited soil sampling program on the site to investigate potential contamination to assist in the preparation of a Review of Environmental Factors (REF), to support planning and approvals for the Milton Hospital Upgrade project.

5.2 Scope

WSP undertook the following scope of works for the limited soil sampling programme:

- Site walkover and inspection
- Excavation of four (4) boreholes using a hand auger, refer to bore logs in Appendix D.
- Collection of shallow surficial soil samples from each of the four (4) borehole locations.
- Laboratory analysis of eight (8) samples for the following analytical suite:
 - Total recoverable hydrocarbons (TRH).
 - Benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN).
 - Heavy metals (arsenic, cadmium, chromium, copper, lead, mercury, nickel and zinc).
 - Polycyclic aromatic hydrocarbons (PAH).
 - Asbestos
 - Per- and polyfluoroalkyl substances (PFAS).
- Laboratory analysis of one (1) duplicate sample and one (1) rinsate sample for quality control purposes.
- Comparison of analytical results against applicable site assessment criteria.

5.3 Site walkover inspection

The site was inspected on 27 May 2025 by a WSP Senior Associate Environmental Consultant. A photographic log from the walkover is included in Appendix C.

The site inspection was conducted in publicly accessible external areas of the site; no internal building inspection was undertaken. At the time of the inspection, the majority of the site was occupied by Milton Ulladulla Hospital, with the exception of the building located at the south-western corner, which was occupied by the Milton Ulladulla Community Cancer Services Centre.

The site was bound by Princes Highway to the south, Gumley Lane to the north, and low density residential properties to the west and east. The site comprised the main Milton Ulladulla Hospital building, centrally located within the site, along with associated ancillary buildings and structures, sealed asphalt access roads and car parks, grass covered areas, and landscaped gardens.

Key observations were:

Evidence of bulk storage of flammable liquid (suspected diesel fuel for the backup generators, however, this was not confirmed) was observed adjacent to the eastern boundary of the site, within a concrete structure (the MUH-E building). A patch of bare soil (approximately 1 metre by 1.5 metres) was observed to the north of MUH-E.

- Multiple fire hydrants and extinguishers were noted throughout the site.
- Two diesel fuelled backup generators were observed to the west of the main hospital building, with a concrete hardstand observed beneath it (preventing any unexpected spills from contact with the ground surface). No fuel lines were connected to the generators, suggesting internal fuel storage. No signs of leaks or spills was noted. An oil and fuel spill response kit was located next to the generators. Signage indicated that maintenance was managed by PowerGen Australia, with a phone number provided.
- A large liquified petroleum gas (LPG) above ground storage tank (AST) was noted to the north of the previously
 mentioned diesel fuelled backup generators. An additional, smaller LPG AST was also noted to the south of the
 Cancer building. Signage indicated that maintenance was managed by Origin, with a phone number provided.
- Undulating mounds were observed, indicative of some cut/fill activities.

Additional site features included:

- Landscaped gardens, characterised by mulched garden beds containing shrubs and bushes, were present throughout
 the site, along with a number of mature trees and grass covered areas. Intermittent areas of bare ground were
 observed beneath consistent tree canopy cover; these were not considered indicative of contamination, rather the
 result of limited sunlight availability.
- Areas covered in asphalt pavement and some grass covered areas throughout the hospital complex were utilised for vehicle parking.
- A number of stormwater drains were noted across the site.

5.4 Methodology

Intrusive assessment comprised collection of shallow surface samples from four boreholes to a maximum depth of 0.35 m below ground level (mBGL). The boreholes were hand augered and samples collected on 27 May 2025. Quality assurance/control (QAQC) samples were also taken including an intra-laboratory duplicate and a rinsate blank (water sample). The samples collected and analytical suite are identified in Table 5.1.

The contamination assessment included:

- A visual inspection and logging of the soil profile, including inspection for ACM.
- Collection of soil samples at the surface (0.0-0.1 mBGL), at a depth of 0.2-0.3 mBGL and at a depth of 0.5-0.6 mBGL (unless prior refusal), at a minimum, and at any evidence of contamination or change in soil type or quality. Samples were collected directly from the hand-auger, using new dedicated nitrile gloves for each sample.
- Samples were placed in an "esky", with samples for chemical analysis being placed with ice to keep the sample chilled.
- All samples collected were submitted under chain of custody to ALS Environmental (ALS). ALS holds accreditation with National Association of Testing Authorities (NATA) for analyses performed, with the exception of asbestos fines/friable asbestos (AF/FA) analysis, which is currently unable to be NATA accredited for the detection limits required. Some "total" results are not NATA accredited, however, the individual analyses are accredited. Copies of the laboratory certificates including chain of custody documentation are included in Appendix E.

		Analysis					
Borehole	Sample depth	ткн	BTEXN	Heavy metals	PAHs	Asbestos	PFAS
BH01	0.05	Х	X	X	Х	Х	X
	0.0	Х	X	X	Х	Х	Х
BH02	0.2	Х	X	X	Х	Х	Х
	0.3	Х	X	X	Х	Х	Х
DU02	0.0	Х	X	X	Х	Х	Х
BH03	0.1	Х	X	X	Х	Х	Х
	0.0	Х	X	X	Х	Х	X
BH04	0.1	Х	X	X	Х	Х	Х
	0.1 (as QA100)	Х	X	X	Х		Х
Hand auger Rinsate	Rinsate	Х	Х	X			X

Table 5.1Samples collected

5.5 Soil assessment criteria

The assessment criteria for the investigation have been based on an analysis of land uses and potential receptors. Based on this, the assessment criteria provided in the following guidelines have been identified as being applicable for assessing laboratory analytical data:

- Schedule B1 Guideline on Investigation Levels for Soil and Groundwater of the National Environment Protection (Assessment of Site Contamination) Measure 1999, National Environment Protection Council, 2013 (NEPC 2013, the NEPM).
- *PFAS National Environmental Management Plan Version 3.0*, Heads of EPA Australia and New Zealand, March 2025 (the NEMP).

Assessment results have been initially reviewed against criteria applicable to the ongoing use of the site as a hospital. Based on this land use the application of ecological-based criteria is not considered to be relevant.

The NSW EPA has endorsed the NEPM (2013), which presents criteria for a range of land use scenarios (such as residential, parks and open spaces, and commercial/industrial use). The health investigation levels (HILs) and health screening levels (HSLs), presented in Schedule B1 of the NEPM provide an assessment of potential risk to human health from exposure to soil by dermal contact, ingestion or inhalation pathways. HSLs are soil type and depth dependent while HILs are independent of soil type and depth.

Soil assessment criteria typically adopted for commercial/industrial sites are not applicable for sites which are used by sensitive populations (such as children and the elderly on hospital sites). Analytical results for soil samples collected during this assessment were therefore compared to criteria for residential sites with limited opportunity for soil access (HIL B and HSL A/B). As a conservative approach the HSLs for shallow sand have been adopted to assess risk from exposure to hydrocarbon compound vapours.

The NEPM also documents management limits (MLs) for hydrocarbon compounds. MLs are values which are intended to be protective of buried infrastructure, fire and explosive hazards and the formation of non-aqueous phase liquids. MLs are soil type dependent. The conservative MLs for coarse-grained soil has been adopted as a screening level.

The NEMP provides guidance on the management of per and polyfluoroalkyl substances (PFAS), a complex group of chemicals which have been used for a wide range of purposes including in fire fighting foams. The NEMP documents health based guidelines for a limited number of PFAS compounds for a range of land uses. The HILs for residential land use with minimal access for soil were adopted, consistent with guidance from the NEPM.

Results are compared against these criteria in Table F1 in Appendix F.

5.6 Fieldwork observations

The boreholes were drilled in grass covered, accessible areas of the site. Fill materal was observed the maximum depth of investigation (refusal at 0.35 mBGL). Fill was variable, and included silty clay, gravelly or clayey sand, sandy clay, low plasticity clay and high plasticity silty clay. Borelogs are presented in Appendix D.

No potential ACM or odours or staining indicating potential contaminaiton were observed. As noted in Section 5.3 undulating mounds were observed, indicative of some cut/fill activities

5.7 Laboratory analytical results

Analysis results are summarised in Table F1 in Appendix F. The following is a summary of the chemical analytical results:

- Concentrations of one or more analytes were detected above laboratory limit of reporting (LOR) in all samples analysed for heavy metals. All results were below the criteria adopted for the site assessment.
- TRH and BTEXN were not detected in any of the samples analysed. The detection limits for the analytes were below the criteria adopted for the site assessment.
- Low levels of PAH compounds were detected in one sample (BH04_0.1-.0.3 and the corresponding QA/QC duplicate). All PAH results were below the criteria adopted for the site assessment.
- Asbestos (including "trace" asbestos or respirable fibres), synthetic mineral fibres and organic fibres were not detected in any of the samples analysed..
- Low levels of PFAS compounds were detected in the majority of the samples analysed. The concentrations of
 perfluorooctane sulfonic acid (PFOS) reported were four orders of magnitude below the criteria adopted for the site
 assessment.

6 Conceptual site model

Based on the desktop review of the site setting and historical land use information, the site inspection and on the results of the limited soil sampling and analysis program a preliminary conceptual site model (CSM) has been prepared. This is summarised Table 6.1.

Table 6.1 Preliminary Conceptual Site Moel

Source	Potential contaminant	Potential transport mechanisms	Potential exposure pathways	Potential receptors	Comments
Site filling: cut and fill activities or importation of uncontrolled fill	A broad range of potential contaminants including asbestos, metals, TRH, BTEX and PAH	Direct release to fill material. Transport of soil particles in stormwater flow.	Direct contact. Incidental ingestion of soil. Inhalation of dust or fibres derived from exposed soil.	Hospital staff, maintenance workers, patients.	Potentially complete pathway. Patients are unlikely to access areas of the site which are not paved or covered by buildings.
Historic fire: potential use of fire-fighting foams	PFAS	Application to ground during firefighting activities. Leaching to surface water and ground water.	Direct contact. Incidental ingestion of soil. Inhalation of dust from exposed soil.	Hospital staff, maintenance workers, patients.	Unlikely to be a complete pathway due to the date of the fire and based on the shallow soil analytical results.
Fuel (diesel) storage	TRH	Direct release to ground by spillage or leakage. Transport of soil particles in stormwater flow.	Direct contact. Incidental ingestion of soil.	Hospital staff, maintenance workers.	Unlikely to be a complete pathway as diesel is stored in an above ground tank or in day-tanks on the back-up power generators and there is no evidence of spills or leakage.
Off-site commercial/ industrial activities including fuel storage on a former service station site	TRH, BTEXN	Groundwater transport of dissolved phase contamination.	Inhalation of vapours from groundwater. Direct or indirect contact with groundwater is not considered to be a complete pathway.	Hospital staff, maintenance workers, patients.	Unlikely to be a complete pathway as the occurrence of leakage from the off-site service station tanks is unconfirmed.

7 Summary

Based on the investigations performed for the property at 106 Princes Highway, Milton, the following summary can be made with respect to risks related to contamination:

- Based on the site topography, it is possible that filling either by cut and fill or with imported, potentially
 contaminated, materials may have occurred throughout the site as part of levelling relating to construction of
 buildings on the site.
- Hospital land use at the site commenced in 1967. Based on available desktop information, no commercial activities with a high potential to cause contamination are known to have occurred at the site.
- A heritage cottage located in the south western corner of the site was destroyed by fire in 2005.
- A review of registers maintained by the EPA with respect to contamination issues or activities which require a licence did not identify on-site, or nearby off-site, premises which pose a significant risk to the condition of the site.
- The results of the limited soil investigation sampling and analysis program did not identify concentrations of
 potential contaminants above the adopted assessment criteria.
- Asbestos fibre cement sheet fragments and debris was identified on the soil surface within the subfloor tunnels of the Main Building during a hazardous materials survey performed in 2024.

8 Conclusions and recommendations

It is considered unlikely that current and former activities at the site, or from nearby commercial sites, have resulted in gross contamination of the Milton Ulladulla Hospital site.

It is understood that the site will continue to be used as a hospital and for provision of health services and an upgrade of site facilities is proposed. The proposed upgrade includes an expansion of the existing cancer care centre and an upgrade of medical imaging facilities. Based on the results of the investigations performed it is considered the site is suitable for ongoing use as a hospital.

The following recommendations are made:

- A Construction Environmental Management Plan (CEMP), including an unexpected finds protocol, be implemented if the upgrade includes ground disturbance works.
- Waste, including excess spoil, must be disposed in accordance with regulatory guidance following classification in accordance with the NSW EPA's Waste classification guidelines Part 1: Classifying waste (EPA 2014).

9 Limitations

This Report is provided by WSP Australia Pty Limited (WSP) for Taylor Construction Group Pty Ltd (Client) in response to specific instructions from the Client and in accordance with WSP's proposal dated 2 May 2025 and agreement by the Client dated 19 May 2025 (Agreement).

9.1 Permitted purpose

This Report is provided by WSP for the purpose described in the Agreement and no responsibility is accepted by WSP for the use of the Report in whole or in part, for any other purpose (Permitted Purpose).

9.2 Qualifications and assumptions

The services undertaken by WSP in preparing this Report were limited to those specifically detailed in the Report and are subject to the scope, qualifications, assumptions and limitations set out in the Report or otherwise communicated to the Client.

Except as otherwise stated in the Report and to the extent that statements, opinions, facts, conclusion and / or recommendations in the Report (Conclusions) are based in whole or in part on information provided by the Client and other parties identified in the report (Information), those Conclusions are based on assumptions by WSP of the reliability, adequacy, accuracy and completeness of the Information and have not been verified. WSP accepts no responsibility for the Information.

WSP has prepared the Report without regard to any special interest of any person other than the Client when undertaking the services described in the Agreement or in preparing the Report.

9.3 Use and reliance

This Report should be read in its entirety and must not be copied, distributed or referred to in part only. The Report must not be reproduced without the written approval of WSP. WSP will not be responsible for interpretations or conclusions drawn by the reader. This Report (or sections of the Report) should not be used as part of a specification for a project or for incorporation into any other document without the prior agreement of WSP.

WSP is not (and will not be) obliged to provide an update of this Report to include any event, circumstance, revised Information or any matter coming to WSP's attention after the date of this Report. Data reported and Conclusions drawn are based solely on information made available to WSP at the time of preparing the Report. The passage of time; unexpected variations in ground conditions; manifestations of latent conditions; or the impact of future events (including (without limitation) changes in policy, legislation, guidelines, scientific knowledge; and changes in interpretation of policy by statutory authorities); may require further investigation or subsequent re-evaluation of the Conclusions.

This Report can only be relied upon for the Permitted Purpose and may not be relied upon for any other purpose. The Report does not purport to recommend or induce a decision to make (or not make) any purchase, disposal, investment, divestment, financial commitment or otherwise. It is the responsibility of the Client to accept (if the Client so chooses) any Conclusions contained within the Report and implement them in an appropriate, suitable and timely manner.

In the absence of express written consent of WSP, no responsibility is accepted by WSP for the use of the Report in whole or in part by any party other than the Client for any purpose whatsoever. Without the express written consent of WSP, any use which a third party makes of this Report or any reliance on (or decisions to be made) based on this Report is at the sole risk of those third parties without recourse to WSP. Third parties should make their own enquiries and obtain independent advice in relation to any matter dealt with or Conclusions expressed in the Report.

9.4 Disclaimer

No warranty, undertaking or guarantee whether expressed or implied, is made with respect to the data reported or the Conclusions drawn. To the fullest extent permitted at law, WSP, its related bodies corporate and its officers, employees and agents assumes no responsibility and will not be liable to any third party for, or in relation to any losses, damages or expenses (including any indirect, consequential or punitive losses or damages or any amounts for loss of profit, loss of revenue, loss of opportunity to earn profit, loss of production, loss of contract, increased operational costs, loss of business opportunity, site depredation costs, business interruption or economic loss) of any kind whatsoever, suffered on incurred by a third party.

References

- Cancer Support Foundation, n.d. *Our Story*. [online] Available at: https://www.cancersupportfoundation.org.au/ourstory [Accessed 3 Jun. 2025].
- HEPA 2025. PFAS National Environmental Management Plan Version 3.0, Heads of EPA Australia and New Zealand, 2025.
- Illawarra Shoalhaven Local Health District (ISLHD), n.d. *Milton Ulladulla Hospital*. [online] Available at: https://www.islhd.health.nsw.gov.au/hospitals/milton-ulladulla-hospital [Accessed 3 Jun. 2025].
- Land Insight, 2025. 106 Princes Highway Milton, NSW (Ref: LI-4836 DDR), 28 May 2025.
- National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013).
- NSW EPA 2020. Contaminated Land Guidelines, Consultants Reporting on Contaminated Land.
- NSW EPA Contaminated land record database <u>http://www.epa.nsw.gov.au/prclmapp/searchregister.aspx</u>.
- NSW EPA Protection of the Environment Operations Act 1997 public register <u>http://www.epa.nsw.gov.au/prpoeoapp/</u>
- WSP, 2024. Targeted Hazardous Materials Report and Register: Milton Ulladulla Hospital, 106 Princes Highway, Milton NSW 2538. WSP Pty Ltd.
- WSP, 2025. Technical Scope of Works Report Asbestos Remediation Works: Milton Ulladulla Hospital, 106
 Princes Highway, Milton NSW 2538. WSP Pty Ltd.

Appendix A Figure

Contamination Investigation

Figure 1- Borehole Locations

Legend Site boundary Borehole locations

Coordinate System: GDA 2020 MGA Zone 56 Scale ratio correct when printed at A3

1:388

Date: 22-05-2025

Data Sources: NearMap, OpenStreetMap

© WSP Australia Pty Ltd ("WSP") Copyright in the drawings, information and data recorded ("the information") is the property of WSP. This document and the information are solely for the use of the authorised recipient and this document may not be used, copied or reproduced in thole or part for any purpose other than that which it was supplied by WSP. WSP makes no representation. Undertakes no duty and accepts no reprosmolities of the authorised the duthorised the information. NCSI Certified Quality System to ISO 9001. © APPROVED FOR AND ON BENALF OF WSP Australian Pty Ltd.

Appendix B Land Insight Report

Due Diligence Insight Report

106 Princes Highway Milton, NSW

1.41

28 May 2025

Report nº: LI-4836 DDR

Understanding your report

Thank you for ordering your report from Land Insight. If you have any feedback, questions or queries, please get in touch with us at <u>orders@landinsight.co</u>.

Your Report has been produced by Land Insight and contains information related to current and historical land use information, environmental risks and hazards.

The information presented in this report includes Land Insights' comprehensive research into current and historical land use derived from Land Insight's proprietary National Land Use Atlas (NLUA), environmental risk information and data available from public databases, third party providers, local and state authorities. The report also includes detailed property and soil setting information, hydrogeology, identification of potential pollution and contamination along with ground and natural hazards. The records identified are presented within a 200 to 2000m radius (buffer zone) from the boundaries of the Property searched, depending on the screened constraint. The report is separated and grouped into easy to navigate sections as per Summary below:

Section 1	PROPERTY SETTING	Sensitive Receptors, Planning Controls, Zoning, Heritage, Soil and Land Information, Geology and Topography
Section 2	HYDROGEOLOGY AND GEOTECHNICAL	Groundwater Bores and Other Borehole investigations, Groundwater Dependent Ecosystems (GDE), Aquifer and Wetland, Other Hydrogeology information.
Section 3	ENVIRONMENTAL REGISTERS, LICENCES AND INCIDENTS	Contaminated Land Public Register, Licences, Audits and Orders, Sites Regulated by Other Jurisdictional Body (Former Gaswork sites / PFAS sites, UXO Areas), Historical Landfills, Derelict Mines and National Pollutant Inventory (NPI).
Section 4	POTENTIALLY CONTAMINATED AREAS	Potentially Contaminating activities (Industries, businesses and activities that may cause contamination), Historical Potentially Contaminating activities and Historical Land Use.
Section 5 NATURAL HAZARDS		Erosion hazard, Flood hazards, Bushfire prone land and Bushfire history.

This report includes data listed on page 4 (table of contents). All sources of data and definitions are provided in the Product Guide (Attached). For a full list of references, metadata, publications or additional information not provided in this report, please contact <u>orders@landinsight.co</u>.

This report does not include information derived from a physical inspection. It is important to note that a site inspection can present information relevant to other risks and hazards that may not be identified by this Report.

Due to the ongoing nature of database development and frequency of updates provided by various state government regulators and data sources, the data displayed within this report is only current from date of production. While every effort is made to ensure the details in your Report are correct, Land Insight cannot guarantee the accuracy or completeness of the information and/or data provided.

This Report, and your use of it, is regulated by Land Insight's Terms and Conditions. For more information, see Land Insight's Product Guide.

Report Summary

	Dataset name	Onsite	On Buffer	Buffer Distance
Sectio	n 1 - Property Setting			
1.1	Sensitive Receptors	√	√	200m
1.2a	Planning Controls (Zoning)	√	√	500m
1.2b	Planning Overlays (Environmental Planning Instruments)	√	√	500m
	Planning Overlays (Other Planning Information)			500m
1.3	Heritage (State and Local Heritage)	√	\checkmark	200m
	Heritage (Australian and World Heritage Database Register)			200m
1.4a	Soil and Land Use Information (Soil Landscape)	√	\checkmark	500m
	Soil and Land Use Information (Soil Salinity)			500m
	Soil and Land Use Information (<i>Radon</i>)	√	\checkmark	500m
1.4b	Acid Sulfate Soil (State and Local Acid Sulfate Soil Registers)	√	√	500m
	Acid Sulfate Soil (National Acid Sulfate Soil Registers)	√	√	500m
1.5	Geology and Topography (Geology)	\checkmark	\checkmark	500m
	Geology and Topography (Naturally Occurring Asbestos Potential NOA)			500m
Sectio	n 2 - Hydrogeology and Geotechnical		·	
2.1	GDE & Hydrogeology Constraints (Aquifer Type)	√	√	2000m
	GDE & Hydrogeology Constraints (Groundwater Protection Areas)			2000m
	GDE & Hydrogeology Constraints (Wetlands)			2000m
	GDE & Hydrogeology Constraints (GDE Surface)			2000m
	GDE & Hydrogeology Constraints (GDE Subsurface)		\checkmark	2000m
	GDE & Hydrogeology Constraints (Groundwater Licences)			2000m
	GDE & Hydrogeology Constraints (Groundwater Bores)		\checkmark	2000m
2.2	Groundwater and Other Bores (Groundwater Restricted Use Zones)			2000m
	Groundwater and Other Bores (Groundwater Salinity)	\checkmark	\checkmark	2000m
	Groundwater and Other Bores (Other Known Boreholes Investigations)		\checkmark	2000m
Sectio	n 3 - Environmental Registers, Licences and Incidents			
3.1	Contaminated Land Public Register (Contaminated Sites)			1000m
3.2	Licences, Approvals & Assessments (Licences)		\checkmark	1000m
	Licences, Approvals & Assessments (Audits)		\checkmark	1000m
	Licences, Approvals & Assessments (Clean up Notices, Penalty Notices and Orders)		\checkmark	1000m
3.3a	Sites Regulated by other Jurisdictional Body (Contaminated Legacy Areas)			2000m
	Sites Regulated by other Jurisdictional Body (Defence, Military Sites and UXO Areas)			2000m
	Sites Regulated by other Jurisdictional Body (Former Gasworks Sites)			2000m
	Sites Regulated by other Jurisdictional Body (PFAS Sites)			2000m
3.3b	Other Potential Hazard Sources (Mines and Quarries)			500m
	Other Potential Hazard Sources (Landfills)			500m
	Other Potential Hazard Sources (National Pollutant Inventory NPI)			500m
Sectio	n 4 - Potentially Contaminated Areas			
4.1	Potentially Contaminating Activities (Liquid Fuel Facilities)	\checkmark	\checkmark	200m
4.2	Historical Business Directories		\checkmark	200m
Sectio	n 5 - Natural Hazards			
5.1	Fire Hazard (Bushfire Prone Areas)		\checkmark	500m
	Fire Hazard (Bushfire History)			500m
5.2	Flood Hazard (Flood Planning Area)			500m
	Flood Hazard (Other Flood Studies)			500m
	Flood Hazard (Flood History)			500m
5.3	Erosion Hazard	√	\checkmark	500m

Index

INDEX	1
SECTION 1 - PROPERTY SETTING	z
1.1 Sensitive Receptors	
1.2a Planning Controls	
Zoning	
1.2b Planning Overlays	
Environmental Planning Instruments	
Other Planning Information	
1.3 Heritage	5
State and Local Heritage Registers	
Australian Heritage Database Register	6
1.4a Soil and Land Use Information	
Soil Landscape	
Salinity Radon	
1.4b Acid Sulfate Soil State and Local Acid Sulfate Soil Registers	
National Acid Sulfate Soil Register	
1.5 Geology and Topography	
Geology	
Naturally Occurring Asbestos Potential (NOA)	
Topography	10
SECTION 2 - HYDROGEOLOGY AND GEOTECHNICAL	11
2.1 GDE & Hydrogeology Constraints Aquifer Type	
Groundwater Protection Areas	
Wetlands	
Groundwater Dependent Ecosystems (GDE) - Aquatic (Surface)	
Groundwater Dependent Ecosystems (GDE) - Terrestrial (Subsurface) Groundwater Licences (Western Australia)	
Groundwater Bores	
Groundwater Bores Driller Lithology Details	
2.2 Groundwater and other Bores	13
Groundwater Restricted Use Zones	
Groundwater Salinity	
Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes)	
SECTION 3 - ENVIRONMENTAL REGISTERS, LICENCES AND INCIDENTS	14
3.1 Contaminated Land Public Register	
Contaminated Land Public Register	
3.2 Licences, Approvals & Assessments	
Licences.	
Audits, PRSA	15
Clean Up, Penalty Notices and Orders	
3.3a Sites Regulated by other Jurisdictional Body	
Contaminated Legacy Areas	
Defence, Military Sites and UXO Areas Former Gasworks Sites	
PFAS Sites	
3.3b Other Potential Hazard Sources	
Mines and Quarries (current and historical)	

Landfills (current and historical)	
National Pollutant Inventory (NPI)	
SECTION 4 - POTENTIALLY CONTAMINATED AREAS	
4.1 Potentially Contaminating Activities	
Industries, businesses and activities that may cause contamination	
4.2 Historical Business Directories	
SECTION 5 - NATURAL HAZARDS	26
5.1 Fire Hazard	
Bushfire Prone Areas	
Bushfire History	
5.2 Flood Hazard	
Flood Planning Area	
Other Flood Studies	
Flood History	
5.3 Erosion Hazard	
Erosion Hazard	
PRODUCT GUIDE	29

ATTACHMENTS

Appendix A - Report Maps Appendix B - Historical Imagery

Section 1 Property Setting

1.1 Sensitive Receptors and Features of Interest

Map 1.1 (200m)

Sensitive receptor	Туре	Distance (m)	Direction
Milton Ulladulla Hospital	Hospital and Health Care	0.0	Onsite
Milton Ulladulla Nursing Agency	Residential and Aged Care Services	7.5	West
Watercourse	Watercourse	164.4	North
Milton Swimming Centre	Sports and Recreation	171.7	North

Source: <u>Sensitive Receptors</u>

1.2a Planning Controls

Map 1.2a (500m)

Zoning

Zoning	Туре	Details	Distance (m)	Direction
SP2	Infrastructure	Shoalhaven Local Environmental Plan 2014	0.0	Onsite
R2	Low Density Residential	Shoalhaven Local Environmental Plan 2014	0.4	North
E1	Local Centre	Shoalhaven Local Environmental Plan 2014	19.5	South
R3	Medium Density Residential	Shoalhaven Local Environmental Plan 2014	39.5	South-west
R1	General Residential	Shoalhaven Local Environmental Plan 2014	107.2	North
RE1	Public Recreation	Shoalhaven Local Environmental Plan 2014	107.9	North
RU1	Primary Production	Shoalhaven Local Environmental Plan 2014	176.4	North
R5	Large Lot Residential	Shoalhaven Local Environmental Plan 2014	279.4	North-east

Zoning	Туре	Details	Distance (m)	Direction
E4	General Industrial	Shoalhaven Local Environmental Plan 2014	307.8	South
C2	Environmental Conservation	Shoalhaven Local Environmental Plan 2014	437.0	North-west
SP3	Tourist	Shoalhaven Local Environmental Plan 2014	464.5	South-east

Source: Zoning, Planning Overlays and Other Planning Information

1.2b Planning Overlays

Environmental Planning Instruments

Distance Direction Name Туре Details (m) Coal Seam Gas State Environmental Planning Policy **Buffer Area** 0.0 Onsite Exclusions (Resources and Energy) 2021 State Environmental Planning Policy **SEPP Land Application** Onsite Land Application 0.0 (Resilience and Hazards) 2021 State Environmental Planning Policy Land Application **SEPP Land Application** 0.0 Onsite (Biodiversity and Conservation) 2021 Item - General Shoalhaven Local Environmental Plan 2014 Heritage 0.0 Onsite State Environmental Planning Policy Land Application **SEPP Land Application** (Exempt and Complying Development 0.0 Onsite Codes) 2008 500-524 Shoalhaven Local Environmental Plan 2014 North Minimum Lot Size (sq m) 0.0 Maximum Building 8-8.9 Shoalhaven Local Environmental Plan 2014 0.0 North Height (m) State Environmental Planning Policy SEPP Land Application Land Application 0.0 Onsite (Industry and Employment) 2021 State Environmental Planning Policy No Land Application SEPP Land Application 65—Design Quality of Residential 0.0 Onsite Apartment Development State Environmental Planning Policy 0.0 Onsite Land Application **SEPP Land Application** (Primary Production) 2021 State Environmental Planning Policy Land Application SEPP Land Application 0.0 Onsite (Planning Systems) 2021 State Environmental Planning Policy Land Application SEPP Land Application 0.0 Onsite (Transport and Infrastructure) 2021 State Environmental Planning Policy Land Application SEPP Land Application 0.0 Onsite (Resources and Energy) 2021 State Environmental Planning Policy Land Application **SEPP Land Application** 0.0 Onsite (Housing) 2021 Class 5 Acid Sulfate Soils Shoalhaven Local Environmental Plan 2014 0.0 Onsite State Environmental Planning Policy Minimum Water Use 40% 0.0 Onsite Standard (%) (Sustainable Buildings) 2022 Allowable Clearing State Environmental Planning Policy Allowable Clearing 0.0 Onsite (Biodiversity and Conservation) 2021 Area State Environmental Planning Policy Land Application **SEPP Land Application** 0.0 Onsite (Sustainable Buildings) 2022 Included Shoalhaven Local Environmental Plan 2014 Land Application 0.0 Onsite State Environmental Planning Policy Land Within a Coal Seam Gas 0.0 North **Residential Zone** Exclusions (Resources and Energy) 2021 State Environmental Planning Policy Subject Land **SEPP Land Application** 0.0 Onsite (Biodiversity and Conservation) 2021 Additional Additional Permitted Shoalhaven Local Environmental Plan 2014 147.7 West Permitted Uses Uses Category 3 Riparian Lands and Shoalhaven Local Environmental Plan 2014 162.9 North Watercourse Watercourses

Map 1.2b (500m)

Name	Туре	Details	Distance (m)	Direction
10-49.9	Minimum Lot Size (sq m)	Shoalhaven Local Environmental Plan 2014	175.0	North
3000-4999	Minimum Lot Size (sq m)	Shoalhaven Local Environmental Plan 2014	277.9	North-east
Scenic Protection	Scenic Protection	Shoalhaven Local Environmental Plan 2014	432.8	North
Excluded Land	Terrestrial Biodiversity	Shoalhaven Local Environmental Plan 2014	435.9	North-west
Biodiversity - significant vegetation	Terrestrial Biodiversity	Shoalhaven Local Environmental Plan 2014	435.9	North-west

Other Planning Information

Name	Туре	Details	Distance (m)	Direction
Not identified	-	-	-	-

Including Mining Subsidence Areas.

Source: Zoning, Planning Overlays and Other Planning Information

1.3 Heritage

Map 1.3 (500m)

State and Local Heritage Registers

Site ID	Site Name	Туре	Details	Distance (m)	Direction
281	Federation Weatherboard Residence and Well, "Garrad House" Federation Period Farm House	Heritage Register	ltem - General	0.0	Onsite
286	Victorian Georgian Residence and former Dispensary	Heritage Register	ltem - General	19.5	South
297	Late Victorian Brick Residence	Heritage Register	Item - General	19.5	South
287	Federation Weatherboard Residence and garden	Heritage Register	Item - General	20.0	South
289	Victorian Weatherboard Hall (former Salvation Army Hall)	Heritage Register	Item - General	20.2	South
290	Federation Weatherboard Residence	Heritage Register	ltem - General	26.9	South- east
291	Inte-war Californian Bungalow	Heritage Register	ltem - General	39.2	South- east
280	Victorian Weatherboard Residence and shop	Heritage Register	Item - General	47.0	West
278	Two storey Victorian Bakery and Residence	Heritage Register	Item - General	63.5	West
284	Relocated Victorian Rendered Masonry Lighthouse Keeper's Cottage	Heritage Register	ltem - General	75.1	East
283	Milton Anglican Church Group incl Victorian Gothic Revival Church, Gothic style Hall and Chinese Elm	Heritage Register	ltem - General	104.9	West
277	"The Star Hotel" two storey Rendered Masonry building	Heritage Register	ltem - General	147.5	West
259	Victorian Weatherboard Residence and garden	Heritage Register	ltem - General	148.8	South- west
282	Victorian Italianate style Bank Building (former CBC Bank)	Heritage Register	ltem - General	151.0	West

Site ID	Site Name	Туре	Details	Distance (m)	Direction
260	Victorian Georgian Worker's Cottage	Heritage Register	Item - General	163.2	South- west
279	"The Settlement" RowofVict Masonry Shops & Frederick Halls Wboard Shop & Res. & 2 st Com Bldg &Tree	Heritage Register	ltem - General	178.8	West
265	Victorian Gothic Revival Rubblestone Ch (fmr Congregational Ch) &Victorian Georgian Brick Manse	Heritage Register	ltem - General	191.1	South

Source: <u>State and Local Heritage Registers</u>

Australian Heritage Database Register

	Site ID	Site Name	Туре	Details	Distance (m)	Direction		
	Not identified	-	-	-	-	-		
0	Source: Commonwealth Heritage List National Heritage List and World Heritage Area							

Source: Commonwealth Heritage List, National Heritage List and World Heritage Area

1.4a Soil and Land Use Information

Map 1.4a (500m)

Soil Landscape

Code	Name	Soil Group	Description	Distance (m)	Direction
BP	Kurosols	Brown Podzolic Soils	GSG classification - Acid, predominantly brownish to yellowish soils, lacking or with a weak A2 horizon and generally having weakly to moderately differentiated profiles with merging horizons.	0.0	Onsite

Source: <u>Soil Landscape</u>

Salinity

Salinity Hazard	Туре	Details	Distance (m)	Direction
Not identified	-	-	-	-

Source: <u>Soil Salinity</u>

Radon

Radon Level (Bq/m³)	Distance (m)	Direction
11	0.0	Onsite

Typical radon levels in Australia are low and the values shown are the average values for each census district. For specific location, factors such as the local geology and house type could lead to different values. (ARPANSA).

1.4b Acid Sulfate Soil

Map 1.4b (500m)

State and Local Acid Sulfate Soil Registers

Name	Classification	Description	Distance (m)	Direction
Acid Sulfate Soils	Class 5	Class 5: Acid sulfate soils are not typically found in Class 5 areas. Areas classified as Class 5 are located within 500 metres on adjacent class 1,2,3 or 4 land. Development consent requirement: Works within 500	0.0	Onsite

Name	Classification	Description	Distance (m)	Direction
		metres of adjacent Class 1, 2a, 2b, 3 or 4 land that is below 5 metres Australian Height Datum and by which the watertable is likely to be lowered below 1 metre Australian Height Datum on adjacent Class 1, 2a, 2b, 3 or 4 land.		

To ensure that development does not disturb, expose, or drain acid sulfate soils and cause environmental damage, development consent may be required for conducting works within areas and land shown on the Acid Sulfate Soils Map. Source: <u>National, State and Local Acid Sulfate Soils Registers</u>

Source: <u>National, State and Local Acid Sulfate Solis Regi</u>

National Acid Sulfate Soil Register

Name	Classification	Description	Distance (m)	Direction
Atlas of Australian Acid Sulfate Soils	Low Probability of occurrence	Acid sulfate soil generally within upper 1m in wet / riparian areas.	0.0	Onsite

Acid Sulfate Soils (ASS) are all those soils in which sulfuric acid may be produced, is being produced, or has been produced in amounts that have a lasting effect on main soil characteristics.

Source: National, State and Local Acid Sulfate Soils Registers

1.5 Geology and Topography

Geology

Map Sheet	Code	Formation	Age	Group	Dominant Lithology	Description	Distance (m)	Direction
Eastern Lachlan Orogen Synthesis - version 2	Puim	Milton Monzonite	Kungurian (base) to Kungurian (top)	Unassigned Permian intrusions	Monzonite	Porphyritic monzonite with phenocrysts of glassy plagioclase in a black fine- grained (and sporadically sub-aphanitic) matrix; variable to a monzonite- porphyry; weathers to a light colour; small zones of olivine basalt ?dyke material.	0.0	Onsite
Ulladulla 250K Metallogenic (original lines)	Puim	Milton Monzonite	Kungurian (base) to Kungurian (top)	Unassigned Permian intrusions	Monzonite	Porphyritic monzonite with phenocrysts of glassy plagioclase in a black fine- grained (and sporadically sub-aphanitic) matrix; variable to a monzonite- porphyry; weathers to a light colour; small zones of olivine basalt ?dyke material.	0.0	Onsite
Ulladulla- Batemans Bay - Seamless Geology Upgrade	Puim	Milton Monzonite	Kungurian (base) to Kungurian (top)	Unassigned Permian intrusions	Monzonite	Porphyritic monzonite with phenocrysts of glassy plagioclase in a black fine- grained (and	0.0	Onsite

Map 1.5 (500m)

Map Sheet	Code	Formation	Age	Group	Dominant Lithology	Description	Distance (m)	Direction
						sporadically sub-aphanitic) matrix; variable to a monzonite- porphyry; weathers to a light colour; small zones of olivine basalt ?dyke material.		
South Coast Permian intrusions - new age dates	Puim	Milton Monzonite	Kungurian (base) to Kungurian (top)	Unassigned Permian intrusions	Monzonite	Porphyritic monzonite with phenocrysts of glassy plagioclase in a black fine- grained (and sporadically sub-aphanitic) matrix; variable to a monzonite- porphyry; weathers to a light colour; small zones of olivine basalt ?dyke material.	0.0	Onsite
Eastern Lachlan Orogen Synthesis - version 2	Pshs	Snapper Point Formation	Kungurian (base) to Kungurian (top)	Shoalhaven Group	Sandstone	Fine- to medium- grained sandstone, pebbly sandstone and polymictic pebble conglomerate (down sequence), medium- to coarse-grained sandstone with lithic pebbles and fragments, minor siltstone (up sequence); brachiopod, bivalve and bryozoan fossils common.	488.0	East
Ulladulla 250K Metallogenic (original lines)	Pshs	Snapper Point Formation	Kungurian (base) to Kungurian (top)	Shoalhaven Group	Sandstone	Fine- to medium- grained sandstone, pebbly sandstone and polymictic pebble conglomerate (down sequence), medium- to coarse-grained sandstone with lithic pebbles and fragments, minor siltstone (up sequence); brachiopod,	488.0	East

Map Sheet	Code	Formation	Age	Group	Dominant Lithology	Description	Distance (m)	Direction
						bivalve and bryozoan fossils common.		
Ulladulla- Batemans Bay - Seamless Geology Upgrade	Pshs	Snapper Point Formation	Kungurian (base) to Kungurian (top)	Shoalhaven Group	Sandstone	Fine- to medium- grained sandstone, pebbly sandstone and polymictic pebble conglomerate (down sequence), medium- to coarse-grained sandstone with lithic pebbles and fragments, minor siltstone (up sequence); brachiopod, bivalve and bryozoan fossils common.	488.0	East
South Coast Permian intrusions - new age dates	Pshs	Snapper Point Formation	Kungurian (base) to Kungurian (top)	Shoalhaven Group	Sandstone	Fine- to medium- grained sandstone, pebbly sandstone and polymictic pebble conglomerate (down sequence), medium- to coarse-grained sandstone with lithic pebbles and fragments, minor siltstone (up sequence); brachiopod, bivalve and bryozoan fossils common.	488.0	East
Eastern Lachlan Orogen Synthesis - version 2	Q_avf	Alluvial valley deposits	Quaternary (base) to Now (top)	Alluvium	Clastic sediment	Fluvially- deposited quartz-lithic sand, silt, gravel, clay.	488.5	North
NSW Coastal Quaternary Geology - North & South	Q_avf	Alluvial valley deposits	Quaternary (base) to Now (top)	Alluvium	Clastic sediment	Fluvially- deposited quartz-lithic sand, silt, gravel, clay.	488.5	North
Ulladulla 250K Metallogenic (original lines)	Q_avf	Alluvial valley deposits	Quaternary (base) to Now (top)	Alluvium	Clastic sediment	Fluvially- deposited quartz-lithic sand, silt, gravel, clay.	488.5	North
Ulladulla- Batemans Bay - Seamless	Q_avf	Alluvial valley deposits	Quaternary (base) to Now (top)	Alluvium	Clastic sediment	Fluvially- deposited quartz-lithic	488.5	North

Map Sheet	Code	Formation	Age	Group	Dominant Lithology	Description	Distance (m)	Direction
Geology Upgrade						sand, silt, gravel, clay.		
South Coast Permian intrusions - new age dates	Q_avf	Alluvial valley deposits	Quaternary (base) to Now (top)	Alluvium	Clastic sediment	Fluvially- deposited quartz-lithic sand, silt, gravel, clay.	488.5	North

Source: <u>Geology</u>

Naturally Occurring Asbestos Potential (NOA)

Category	On the Property?	Within Buffer?
Not identified	-	-

Source: Naturally Occurring Asbestos NOA

Topography

Topography (Onsite)	70 - 78 mAHD
-------------------------------	--------------

Source: National, State and Local Acid Sulfate Soils Registers

Page 10 LI-4836 DDR

Section 2 Hydrogeology and Geotechnical

2.1 GDE & Hydrogeology Constraints

Map 2.1 (2000m)

Aquifer Type

Туре	Distance (m)	Direction
Fractured or fissured, extensive aquifers of low to moderate productivity	0.0	Onsite

Source: Groundwater Aquifers

Groundwater Protection Areas

Name	Water Plan Area	Distance (m)	Direction
Not identified	-	-	-
Source: Groundwater Protection Areas and Groundwater Res	tricted Use Zones		

Source: Groundwater Protection Areas and Groundwater Restricted Use Zones

Wetlands

Name	Description	Distance (m)	Direction
Not identified	-	-	-

Source: <u>Wetlands</u>

Groundwater Dependent Ecosystems (GDE) - Aquatic (Surface)

Potential	Distance (m)	Direction
Not identified	-	-

Aquatic - Ecosystems that rely on the Surface expression of groundwater. Source: <u>Groundwater Dependent Ecosystems</u>

Groundwater Dependent Ecosystems (GDE) - Terrestrial (Subsurface)

Potential	Distance (m)	Direction
Moderate potential GDE - from regional studies	342.9	North
Low potential GDE - from regional studies	510.4	North- west
High potential GDE - from regional studies	571.1	North- west

Terrestrial - Ecosystems that rely on the Subsurface expression of groundwater. Source: <u>Groundwater Dependent Ecosystems</u>

Groundwater Licences (Western Australia)

Map ID	WRI number	Allocation (KL)	Address	All Parties	Distance (m)	Direction
Not identified	-	-	-	-	-	-

Source: Groundwater Protection Areas and Groundwater Restricted Use Zones

Groundwater Bores

Map ID	Groundwater Bore ID	Authorised Purpose	Completion Date	Drilled Depth (m)	Final Depth (m)	SWL (m)	Salinity/ TDS (mg/l)	Yield (L/s)	Distance (m)	Directio n
3	GW031037	Unknown	01/06/1966	60.4	60.4	Null	Good	0.1	1459.5	South- east
2	GW011946	Household	01/02/1956	2.7	2.7	Null	Null	Null	1775.0	North- west
4	GW011945	Household	01/02/1956	6.6	6.6	Null	Null	Null	1808.4	North- west
1	GW011944	Household	01/02/1956	7.0	7.0	Null	Null	0.3	1832.1	North

Note: The use of the symbol "-" or "Null" indicates that no records were found.

SWL: Standing Water Level (the latest record is displayed). RWL: Rest Water Level (the latest record is displayed). TSS: Total Soluble Salts. Source: Groundwater Bores & Lithology

Groundwater Bores Driller Lithology Details

Groundwater Bore ID	From Depth – To Depth (m) Lithology	Distance (m)	Direction
GW031037	0m-0.61m Soil black 0.61m-2.44m Clay plastic 2.44m-5.49m Clay red hard sandy 5.49m-7.01m Clay yellow sandy 7.01m-8.23m Sandstone grey water bearing 8.23m-11.28m Shale grey sandy 11.28m-24.08m Shale grey soft sandy 24.08m-25.3m Shale grey hard 25.3m-27.74m Sandstone yellow hard 27.74m-36.58m Sandstone grey 36.58m-38.1m Shale grey soft sandy water supply 38.1m-60.35m Shale sandy	1459.5	South-east
GW011946	0m-2.13m Soil sandy 2.13m-2.74m Basalt	1775.0	North-west
GW011945	0m-0.15m Topsoil black 0.15m-2.9m Soil sandy 2.9m-4.88m Sand gravel water bearing 4.88m-6.34m Sand dry gravel 6.34m-6.64m Basalt	1808.4	North-west
GW011944	0m-1.62m Topsoil black 1.62m-3.05m Soil sandy 3.05m-4.42m Sand gravel water supply 4.42m-6.71m Sand dry gravel 6.71m-7.01m Basalt ormbol " " or "Null" indicates that as records were found	1832.1	North

Note: The use of the symbol "-" or "Null" indicates that no records were found.

Source: <u>Groundwater Bores & Lithology</u>

2.2 Groundwater and other Bores

Groundwater Restricted Use Zones

Name / Number	Address	Site History	Description	Distance (m)	Direction					
Not identified	-	-	-	-	-					
Source: Groundwater	Source: Groundwater Protection Areas and Groundwater Restricted Use Zones									

Source: Groundwater Protection Areas and Groundwater Restricted Use Zones

Groundwater Salinity

Class	Salinity Value	Source	Distance (m)	Direction
No Data	No Data	Sinclair Knight Merz	0.0	Onsite

Source: <u>Groundwater Salinity</u>

Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes)

Borehole ID	Purpose	Project	Client/ License	Date Drilled	Depth (m)	Distance (m)	Direction
GT0001889	Intrusive Investigation	A collection of NSW geotechnical reports as part of the NSW Government Geotechnical Report Database Project (GGRD).	Drilling, Standard Penetration Test (SPT), Push Tubes, Soil Sample Analysis located at Milton Public School : geotechnical investigation	01/01/2003	0.0	384.3	North- west
GT0002638	Intrusive Investigation	A collection of NSW geotechnical reports as part of the NSW Government Geotechnical Report Database Project (GGRD).	Drilling, Standard Penetration Test (SPT), Soil Sample Analysis located at Shoalhaven City water supply augmentation	01/01/1995	0.0	1293.2	West

Note: The use of the symbol "-" or "Null" indicates that no records were found.

Source: Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes)

Page 13 LI-4836 DDR

Section 3 Licences and Incidents

Map 3.1 (1000m)

Contaminated Sites

Register Type	Site Name	Address	Description	Details	Distance (m)	Direction
Not identified	-	-	-	-	-	-

If the record does not contain a complete street address and/or cannot be located, the records' geographic location will be approximated and reported as being within the surrounding area.

Source: Contaminated Land Public Register

Table 3.1.	1 Contaminated Land Public Register	
State	Regulatory Body	Information included in this search (by state)
АСТ	EPA (Environment Protection Authority)	Contaminated Land Search
ACT		Register of Contaminated Sites* (on request)
NSW	EPA (Environment Protection Authority)	Sites Notified as Contaminated
143 44	EFA (Environment Protection Authority)	Records of Notices
NT	EPA (Environment Protection Authority)	Contaminated Land Audit
NI	EFA (Environment Protection Authority)	Pollution Abatement Notice
QLD	DES (Department of Environment and Science)	Contaminated Land Search (Environmental Management
450		and Contaminated Land Registers)* (per lot)
SA	EPA (Environment Protection Authority)	Site Contamination Index
•A		Assessment Areas
TAS	EPA (Environment Protection Authority)	Regulated Sites and Premises
TAS		Lutana and Parts of Hobarts Eastern Shore
VIC	EDA (Environment Protection Authority)	Priority Sites Register
۴IC	EPA (Environment Protection Authority)	Pollution Abatement Notice
WA	DWER (Department of Water and Environmental Regulation)	Contaminated Sites Database

This search contains information retrieved from the relevant state authority, agency/department, or government authority that notifies and identifies contaminated land. The list only contains contaminated sites that the regulatory body is aware of or that have been notified by owners or occupiers as contaminated land. The sites are recorded on the register at various stages of the assessment and/or remediation process. If a site is not on the list, it does not necessarily mean the site is not contaminated.

3.2 Licences, Approvals & Assessments

Map 3.2 (1000m)

Licences

Licence Nº	Туре	Licence holder	Location Name	Premise Address	Activity	Dist. (m)*	Direct
4022	No longer in force	FORESTRY CORPORATION OF NEW SOUTH WALES	FORESTRY CORPORATION OF NEW SOUTH WALES	WITHIN THE SOUTHERN REGION DEPICTED ON FIGURE 3 , BATEMANS BAY, NSW 2536	Logging operations	Not mapped	Not mapped

If the record does not contain a complete street address and/or cannot be located, the records' geographic location will be approximated and reported as being within the surrounding area.

*Results that appear as "not mapped" refer to licences that are applied to larger areas and/or without specific definition, such as waterways, forests etc. These are still identified in the search results but will not be shown within the map.

Source: Licences, Approvals & Assessments

Audits, PRSA

N٥	Туре	Licence holder	Location Name	Premise Address	Activity	Dist. (m)*	Direction
1532683	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1532684	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1532686	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1532687	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1533556	Compliance Audit	FORESTRY CORPORATION	SOUTHERN REGION (S.R.) MEANS THE	SOUTHERN REGION (S.R.) MEANS THE	Logging operations	Not mapped	Not mapped

Page 15 LI-4836 DDR

N٥	Туре	Licence holder	Location Name	Premise Address	Activity	Dist. (m)*	Direction
		OF NEW SOUTH WALES	STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)			
1539518	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1550763	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1550761	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1568274	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1568275	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped
1583925	Compliance Audit	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	Logging operations	Not mapped	Not mapped

*If the record does not contain a complete street address and/or cannot be located, the records' geographic location will be approximated and reported as being within the surrounding area.

Source: Licences, Approvals & Assessments

Clean Up, Penalty Notices and Orders

N٥	Туре	Licence holder	Location Name	Premise Address	Details	Dist. (m)*	Direction
1528991	Clean Up Notice	FORESTRY CORPORATION OF NEW SOUTH WALES	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	SOUTHERN REGION (S.R.) MEANS THE STATE FORESTS AND CROWN - TIMBER LANDS (EXCLUDING PLANTATIONS)	s.91 Clean Up Notice	Not mapped	Not mapped

*If the record does not contain a complete street address and/or cannot be located, the records' geographic location will be approximated and reported as being within the surrounding area.

Source: Licences, Approvals & Assessments

Table 3.2	.1 Licences, Approvals & Assessments	
State	Regulatory Body	Information included in this search (by state)
ACT	EPA (Environment Protection Authority)	Environment Protection Authorisation Search Environment Protection Agreement Search
NSW	EPA (Environment Protection Authority)	POEO Public Register (Environment Protection licences, Applications, Notices, Audits or Pollution studies and Reduction Programs)
NT	EPA (Environment Protection Authority)	Environment Protection Licences and Approvals
QLD	DES (Department of Environment and Science)	Environmental Authorities
SA	EPA (Environment Protection Authority)	Licences or Authorisations (Licences, Exemptions and Works Approvals) Environment Protection Orders (EPO) and Clean Up Orders (CUO)
TAS	EPA (Environment Protection Authority)	Regulated Sites and Premises
VIC	EPA (Environment Protection Authority)	Permissions Register (Operating Licence, Permit and Registration) Audit Reports
WA	DWER (Department of Water and Environmental Regulation)	Licences and Works Approvals

3.3a Sites Regulated by other Jurisdictional Body

Map 3.3a (2000m)

Contaminated Legacy Areas

Site Name	Description	Distance (m)	Direction
Not identified	-	-	-

Includes known contaminated areas such as James Hardies Asbestos waste legacy areas, Pasminco Smelter and Uranium processing site. Source: <u>Contaminated Legacy Areas</u>

Defence, Military Sites and UXO Areas

Site name	Type*	Details	Distance (m)	Direction
Not identified	-	-	-	-

 * RCIP (Regional Contamination Investigation Program). UXO (Unexploded Ordnance Areas) .

Source: <u>Defence, Military Sites, and UXO Areas</u>

Former Gasworks Sites

Site name	Description	Distance (m)	Direction
Not identified	-	-	-

Source: Former Gasworks Sites

PFAS Sites

Site name	Туре	Details	Distance (m)	Direction
Not identified	-	-	-	-

Source: <u>PFAS Sites</u>

3.3b Other Potential Hazard Sources

Map 3.3b (500m)

Mines and Quarries (current and historical)

Site name	Description	Status	Distance (m)	Direction
Not identified	-	-	-	-

Source: Mines and Quarries

Landfills (current and historical)

Site name	Description	Status	Distance (m)	Direction
Not identified	-	-	-	-

National Pollutant Inventory (NPI)

Facility name	Address	Primary ANZSIC Class	Latest report	Distance (m)	Direction
Not identified	-	-	-	-	-

Source: Contaminated Legacy Areas

Section 4 Potentially Contaminated Areas

4.1 Potentially Contaminating Activities

Map 4.1 (200m)

Industries, businesses and activities that may cause contamination

Map ID	Site name	Category	Description	Address	Status*	Dist. (m)	Direction
4	Milton Ulladulla Hospital	Manufacturing and Industrial Facilities	General hospital	106 Princes Hwy, Milton NSW 2538	Current	0.0	Onsite
2	Southern IML Pathology	Manufacturing and Industrial Facilities	Pathology Testing Laboratories	143 Princes Hwy MILTON 2538 NSW	Current	20.4	South
3	Signtext & PRINT	Manufacturing and Industrial Facilities	Signwriters	Unit 2/143 Princes Hwy, Milton NSW 2538	Current	20.4	South
1	Caltex Milton	Petrol Stations and Fuel Terminals	Petrol Station	90 Princes Hwy, Milton	Current	103.5	West

*Status: Information is current as when this report was created.

The operational status of the business is determined using the available data sources and does not indicate real-time conditions at the site.

Current: business is operating on the day this report was issued.

Former: business that have been closed or discontinued within 2 years from the date of this report.

Source: Potentially Contaminated Areas, Activities (PCA)

Categories included in this search. (Notifiable activities)					
Abattoirs	Explosives and Dangerous Goods	Paint Industries			
Abrasive Blasting	Extractive Industries	Petrol Stations			
Agriculture / Horticulture	Fire and Rescue	Pharmaceuticals			
Airports	Food Manufacturing	Port and Marina Operations			
Asbestos	Foundry, Smelting or Refining	Power Plants			
Asphalt or Bitumen	Fuel Terminals & Depots	Printing and Photography			
Batteries	Glass, Ceramics and Plastic	Rail Industry and Associated Activities			
Breweries / Distilleries	Gun, Pistol or Rifle Ranges	Rubber and Tyre			
Cement, Concrete or Lime	Hospitals and Research Facilities	Storage Tanks			

Page 19 LI-4836 DDR

Categories included in this search. (Notifiable activities)					
Cemeteries	Landfill Sites	Substations and Switching Stations			
Chemicals	Livestock Dips	Textiles and Tannery			
Coal Yards	Mechanical and Automotive	Timber, Pulp and Paper Works			
Depots and Storage Yards	Metal Fabrication and Treatments	Waste and Recycling Facilities			
Dry Cleaners	Oil and Gas	Wastewater Treatment Facilities			
Electrical or Electrical Components	Other Infrastructure Facilities	-			

Industries, businesses, and activities identified as having an increased likelihood of causing contamination.

The industries and business activities listed above have been identified as having an increased likelihood of causing contamination and have been identified through published state and national guidelines and regulations. These industries are noted due to their potential to store or use substances that could cause contamination to the surrounding environment if not managed appropriately. The identification of these activities does not imply the presence of contamination at the site.

The records identified are based on the reported business activity and have not been assessed based on any current or previous site inspection. Please note that records not identified within this section (due to error or unforeseen omission) does not necessarily mean that the screened area is not potentially contaminated or free of any risks.

4.2 Historical Business Directories

Not mapped

YEAR	Activity	Name	Address	Positional accuracy	Distance (m)	Direction
1970	Contractors - General	Anderson E H	100 Princes Highway,Milton,NSW	Address	6.9	West
2005	SurveyorsLand	Phillip Brown Registered Surveyor	100 Princes Hwy,MILTON,NSW,2538	Address	6.9	West
2005	Surveyors Engineering & Mining; SurveyorsLand	Brown Phillip	100 Princes Hwy,MILTON,NSW,2538	Address	6.9	West
2015	Bakeries	Vince Fresh Bakery	116 Princes Hwy Ulladulla NSW 2539	Address	20.1	East
2005	Tree Felling & Stump Removal	We Care Tree Care	39 Gordon St,MILTON,NSW,2538	Address	43.5	North- east
2005	Electrical Contractors	Rooney Steve	43 Gordon St,MILTON,NSW,2538	Address	44.0	East
2005	Electrical Contractors	S Rooney	43 Gordon St,MILTON,NSW,2538	Address	44.0	East
2005	Television Antenna Services; Television Repairs, Service & Installation; Computer Equipment Hardware; Computer Equipment Repairs, Service & Upgrades	Ralph Woods Electronics	4 Graham St,MILTON,NSW,2538	Address	46.8	North
1965	Motor Panel Beaters	ARJAN MOTORS	131-135,Bombay,NSW	Address	47.5	South
1965	Motor Panel Beaters	NIXON R J (BOB)	131-135,Bombay,NSW	Address	47.5	South
1965	Towing Stations	ARJAN MOTORS	131-135,Bombay,NSW	Address	47.5	South
1980	Motor Service Stations & Garages	Matthews Service Station	127 Princes Highway,Milton,NSW	Address	52.0	South
2005	Saddlers & Riding Outfitters	Milton Saddlery	Shop 3/ 127 Princes Hwy,MILTON,NSW,2538	Address	52.0	South
1965	Plumbers & Gasfitters	Conti&Hunt	125,Milton,NSW	Address	57.5	South- west
1980	Tanks & Tank Equipment	Milton Concrete Tanks	94 Princes Highway, Milton,Ulladulla,NSW	Address	57.6	West
1980	Concrete products	Milton Concrete Tanks	94 Princes Highway, Milton,Ulladulla,NSW	Address	57.6	West
1980	Pumps - Mfrs &/or Merchants	Milton Concrete Tanks	94 Princes Highway, Milton,Ulladulla,NSW	Address	57.6	West
1965	Motor Cars & Trucks—Used	Consolidated Motors Pty Ltd	123, Princes Hghwy, NSW	Address	72.2	South- west
1980	Bakers	Milton-Ulladulla Bakery	92 Princes Highway,Milton,NSW	Address	74.8	West
1970	Contractors - General	Hughes E J	122 Princes Highway,Milton,NSW	Address	89.0	East
1980	Frozen Foods - Mfrs. &/or W'salers	Roberts Food & Beverage	149 Princes Highway, Ulladulla,Milton,NSW	Address	100.3	South- east

YEAR	Activity	Name	Address	Positional accuracy	Distance (m)	Direction
		Distributors (South Coast) Pty Ltd				
1980	Tyre's Retail	Milton Tyre Service	90 Princes Highway, Milton,Ulladulla,NSW	Address	115.9	West
2005	Motor Engineers & Repairers	Milton Auto Centre	90 Princes Hwy,MILTON,NSW,2538	Address	115.9	West
2005	Motor Service Stations & Garages	Milton Motors	90 Princes Hwy,MILTON,NSW,2538	Address	115.9	West
2010	Video & DVD Production & Duplication Service	Top Video Milton	90 Princes Hwy MILTON 2538 NSW	Address	115.9	West
2010	Petrol Stations & Garages	Milton Petrol	90 Princes Hwy MILTON 2538 NSW	Address	115.9	West
2015	Petrol Stations & Garages	Milton Petrol	90 Princes Hwy Milton NSW 2538	Address	115.9	West
2015	Engineers - Motor & Repairers	Milton Auto Centre Warrick Faust	90 Princes Hwy Milton NSW 2538	Address	115.9	West
1965	Plumbers & Gasfitters	Tuppini R	23, Wolseley, NSW	Address	117.1	South
1965	Concrete Form Work Ties & Accessories	Modigliani G	19, Wolseley, NSW	Address	130.9	South
2005	Electrical Contractors	Gilkes Electrical & Communications	E/ 153a Princes Hwy,MILTON,NSW,2538	Address	134.6	South- east
2005	Roof Construction; Roof Repairers & Cleaners; Guttering & Spouting	Milton Ulladulla Metal Roofing Pty Ltd	34 Gordon St,MILTON,NSW,2538	Address	144.9	North- east
2015	Scrapbooking & Layouts	Ann Pomfret- Creative Memories Consultant	48 Gordon St Milton NSW 2538	Address	147.1	South- east
2015	Gas Supply - Lpg	Kleenheat	48 Gordon St Milton NSW 2538	Address	147.1	South- east
1980	Gift Shops	McCormack Furniture Mart	80 Princes Highway, Milton,Ulladulla,NSW	Address	169.7	West
1980	Gift Shops	Milton Gift Shop	80 Princes Highway,Milton,NSW	Address	169.7	West
1980	Lighting	McCormack Furniture Mart	80 Princes Highway, Milton,Ulladulla,NSW	Address	169.7	West
1965	Builders & Contractors	KIRK J B & SON PTY LTD	105,Milton,NSW	Address	181.7	West
1965	Hospitals— Private	Waddell House	91,Milton,NSW	Address	182.2	South
1965	Machinery— Mining & Quarrying	Esco Industrial Equipment	149,Milton,NSW	Address	182.2	South
1965	Plastics	A.C.I. Plastics Pty Ltd	40,Milton,NSW	Address	182.2	South
1965	Taxis	Balmain Hire Car Service	32,Milton,NSW	Address	182.2	South
1965	Oil Drilling Equipment & Supplies	PETERSHAM TRANSPORT CO PTY LTD	28-30,Milton North,NSW	Address	182.2	South
1965	Contractors	Kirk J B&Son Pty Ltd	48,Milton,NSW	Address	182.2	South

YEAR	Activity	Name	Address	Positional accuracy	Distance (m)	Direction
1965	Carriers—Light	Martin S F	85b,Milton,NSW	Address	182.2	South
1965	Chemical Suppliers	Swift&Co (Trading) Pty Ltd	149,Milton,NSW	Address	182.2	South
1965	Air Compressors &/or Equipment	MARINE & INDUSTRIAL POWER CO PTY LTD	149,Milton,NSW	Address	182.2	South
1965	Builders & Contractors	KIRK J B & SON PTY LTD	48,Milton,NSW	Address	182.2	South
1970	Wine & Spirit Mfrs.	Wynvale Wines	149 Milton North Street,Ashford,NSW	Address	182.2	South
1970	Wine & Spirit Mfrs.	Swift & Moore Pty Ltd	149 Milton North Street,Ashford,NSW	Address	182.2	South
2005	Excavating & Earth Moving Equipment	G & S Earthmoving Machinery Repairs Pty Ltd	116b Kingsmon Rd,MILTON,NSW,2538	Address	182.2	South
2015	Leather Goods & Accessories - Retail	Country Leather	Settlement Arcade 97 Princes Hwy Milton NSW 2538	Address	196.7	West
1965	Builders & Contractors	Cazey R L&Co	24, Thomas, NSW	Address	197.2	North- west
1965	Plumbers & Gasfitters	Gailey W G	MilsonLa,NSW	Street		South
1970	Concrete - Ready-Mixed	Specified Concrete Pty Ltd	Wilford Lane,Milton,NSW	Street		South
1970	Ham & Bacon Curers	Canadian Bacon Industries Pty Ltd	Milton Lane, State Abattoirs,Homebush,NSW	Street		South
1970	Farmers	Beynon J G T	Danesbank Street, Milton	Street		South
1970	Farmers	Kendall K W	Kendalldale Street, Milton	Street		South
1970	Farmers	Suffolk J	Applegarth Street, Milton	Street		South
1970	Farmers	Fredericks L A & L O	Wooloomolan Street,Milton	Street		South
1970	Farmers	Johnston P C	Whoppindally Street,Milton	Street		South
1970	Farmers	Leaney N G	The Hut,Milton	Street		South
1970	Farmers	Ryan J	Woodlands Street, Milton	Street		South
1970	Farmers	Wilford G R & J R	Riverview Street, Milton	Street		South
1980	Concrete - Ready-Mixed	BMG Specified Concrete	Wilford Lane,Milton,NSW	Street		South
1980	Concrete - Ready-Mixed	BMG Specified Concrete	Wilford Lane,Milton- Ulladulla,NSW	Street		South
1980	Concrete Contractors	Cornall Sally	Wilford Lane, Milton,Ulladulla,NSW	Street		South
1980	Farmers	Johnston P C	Whoppindally, Milton,Yatte Yattah,NSW	Street		South
1980	Batteries - Storage	Marshall Batteries Pty Ltd	Milton Motor: 90 Princes Highway,Ulladulla,NSW	Place		West
1980	Farmers	Kendall K W	Kendall Dale, Milton,Yatte Yattah,NSW	Place		South
1980	Leather & Grindery Supplies	Country Leather	Settlement Arcade, Milton,Ulladulla,NSW	Place		South

YEAR	Activity	Name	Address	Positional accuracy	Distance (m)	Direction
1980	Nurserymen - Retail	Cockatoo Garden Centre	Settlement Arcade, Milton,Ulladulla,NSW	Place		South
2010	Leather Goods & Accessories - Retail	Country Leather	Settlement Arcade MILTON 2538 NSW	Place		West
1970	Farmers	Arnold J A C	Milton,NSW	Suburb		South
2005	Lawn & Turf Supplies	Coastline Turf Ulladulla	MILTON,NSW,2538	Suburb		South
2005	Gardeners; Lawn Cutting & Maintenance	Robben's Mowing and Gardening	MILTON,NSW,2538	Suburb		South
2005	Fencing Contractors	Shea M&M	MILTON,NSW,2538	Suburb		South
2005	Slashing Contractors; Fencing Contractors	Southern Rural Contracting	MILTON,NSW,2538	Suburb		South
2005	PavingAsphalt & Bitumen; Excavating & Earth Moving Equipment; Bitumen Spraying	A & L Lewis	MILTON,NSW,2538	Suburb		South
2005	Gas Suppliers	Barkwith Stephen & Jan	MILTON,NSW,2538	Suburb		South
2005	Pest Control; Building Inspection Services	Brazon Pest Control & Prevention	MILTON,NSW,2538	Suburb		South
2005	Fencing Materials	Milton Ulladulla Treated Pine	MILTON,NSW,2538	Suburb		South

Land Insight uses a number of address geocoding techniques and has characterised them based on completeness (match rates) and positional accuracy. When a historical street address is incomplete or a match is not found, a record identified as being in the surrounding area will be included for reference and the accuracy of the data is approximate only. An explanation of the positional accuracy records is defined in the table below. Source: Historical Business Directories

Source: <u>Historical Business Directories</u>

Historical data positional accuracy and georeferencing results explanation				
Positional accuracy	Georeferenced	Description		
Address	Located to the address level	When street address and names fully match.		
Street	Located to the street centroid	When street names match but no exact address was found. Location is approximate.		
Place	Located to the structure, building or complex	When building, residential complex or structure name match but no exact address was found. Location is approximate.		
Suburb	Located to the suburb area	When suburb name match but no exact address was found. Location is approximate.		

The data used in this section was extracted from range of historical commercial trade directories and business listings. The business addresses were geocoded using historical information and the accuracy of the data may vary due to changes to the physical address at a given locality over time or the quality of the original records. From 2005, the historical business records in this section are considered more accurate as information was extracted from digital directories with geographic coordinate location information available. On this basis, reliance on the historic listing data should be considered when assessing the risk of contamination from an activity at the site. The presence of a business

listing does not definitively confirm the actual activity that has occurred at the site. For more information on how these records were geocoded and the methodology used by Land Insight, contact us at info@landinsight.co.

Historical business directory listings have been filtered to match activities and industries identified as PCAs in Section 4.1. Please note that any record not identified within this section (due to error or unforeseen omission) does not necessarily mean that the screened area is not potentially contaminated or free of any risks.

Page 25 LI-4836 DDR

Section 5 Natural Hazards

Map 5.1 (500m)

Bushfire Prone Areas

Category	Туре	Details	Distance (m)	Direction
Bushfire Prone Area	Vegetation Buffer	Bushfire prone vegetation buffers are created based on vegetation categories, with buffering distance being 100 metres for vegetation category 1 and 30 metres for vegetation category 2 and 3.	77.2	North
Bushfire Prone Area	Vegetation Category 3	This vegetation category indicates medium bushfire risk vegetation (higher than category 2, and the excluded areas, but lower than Category 1). Vegetation category consists of grasslands, freshwater wetlands, semi-arid woodlands, alpine complex and arid shrublands.	107.2	North
Bushfire Prone Area	Vegetation Category 2	This vegetation category indicate lower bushfire risk than Category 1 and Category 3 but higher than the excluded areas. Vegetation category consists of rainforests and lower risk vegetation parcels.	350.9	North

Source: Fire Hazards

Bushfire History

Туре	Season	Details	Distance (m)	Direction
Not identified	-	-	-	-

Source: Fire Hazards

5.2 Flood Hazard

Flood Planning Area

Туре	Name	Details	Distance (m)	Direction
Not identified	-	-	-	-

Source: <u>Flood Hazard</u>

Other Flood Studies

Туре	Name	Details	Distance (m)	Direction
Not identified	-	-	-	-

Source: Flood Hazard

Flood History

Туре	Season	Details	Distance (m)	Direction
Not identified	-	-	-	-

The list provided is not comprehensive and does not consider all flood history. It only includes the information that is currently available. Source: Flood Hazard

5.3 Erosion Hazard

Map 5.3 (500m)

Erosion Hazard

Category	Туре	Details	Distance (m)	Direction
Landslip Erosion Risk	Very slight to negligible limitations	Very Low	0.0	Onsite
Water Erosion Risk	Moderate limitations	Moderate	0.0	Onsite
Water Erosion Risk	Very severe limitations	Very High	150.4	North
Wind Erosion Risk	Slight but significant limitations	Low	0.0	Onsite
	Very slight to negligible limitations	Very Low	150.4	North

Source: Erosion Hazard

The Commons 388 George Street Sydney NSW 2000 Australia <u>info@landinsight.co</u> www.landinsight.co

Product Guide

Due Diligence Insight Report

28 May 2025

Data Sources

NLUA - The Land Insight National Land Use Atlas (NLUA)

Land Insights' NLUA is a unique, proprietary database, meticulously curated from over a decade's worth of research and hundreds of thousands of diverse information sources. NLUA provides a comprehensive overview of land usage and potential hazards, drawing from a wide array of reliable sources. These include verified Council Records, Historic Zoning Maps, Topographic and Parish Maps, and technically published reports.

NLUA integrates thoroughly researched information extracted from published reports, publications, and technical studies. It also incorporates Land Insight's proprietary machine learning process, which identifies land anomalies, patterns, and changes through aerial imagery interpretations.

Leveraging advanced technologies, NLUA verifies the provenance, authenticity, and precision of its data. This database undergoes rigorous validation procedures carried out by scientists, quality assurance teams, and technical experts. This ensures its accuracy and reliability before publication. For more information on methodologies and further inquiries, please contact the Land Insight teams at support@landinsight.co.

Section 1 - Property Setting

Sensitive Receptors

National – Google. Nearmap. @ Land Insight National Land Use Atlas (NLUA). Points of Interest - © OpenStreetMap. Australian Business Datalist, Australian Schools Database - @ Australian Business Datalist ABDL (with permission). Cadastre. National - The digital cadastral boundaries and their legal identifiers have been derived from the relevant bodies from each Australian State and Territory jurisdiction combined by Land Insight & Resources.

Topographic data and Contours. National - The digital contours data and elevation information have been derived from the relevant bodies from each Australian State and Territory jurisdiction combined by Land Insight & Resources. National - Catchments, Streams, Aquifers, Storages, Wetlands and Man-made Structures that make up the hydrological system - © Geoscience Australia. Parks and National and State Forest Data © Department of Agriculture, Fisheries and Forestry.

Planning Controls and Overlays

Zoning, Planning Overlays and Other Planning Information

The digital planning information have been derived from the relevant bodies from each Australian State and Territory jurisdiction combined by Land Insight & Resources.

Mine subsidence districts - © DFSI Subsidence Advisory NSW. ACT - ACT Territory Plan and Land Use Zones and ovleryas © ACT Government Environment, Planning and Sustainable Development Directorate - Environment. NSW - NSW Environmental Planning Instruments, Land Use Zoning, Local Environmental Plan - © State Government of NSW and NSW Department of Planning, Housing, and Infrastructure. NT - NT Planning Scheme, Land Use Zones © NT Government Department of Infrastructure, Planning and Logistics. QLD - Land use mapping series, Land Use in QLD @ QLD Environment, Science, and Innovation. QLD zoning information, various LGA Councils. SA - Land Development Zones, Planning and Design Code Zones and Overlays - © SA Government Department for Trade and Investment. TAS - Tasmania Planning Scheme, Zoning and Overlays, theLIST ©State of Tasmania. @ Department of Natural Resources and Environment Tasmania. VIC - Tasmania Planning Scheme, Zoning and Overlays, theLIST ©State of Tasmania. @ Department of Natural Resources and Environment Tasmania. WA - Local Planning Scheme and Region Scheme, Zones, and Reserves, © WA Government Department of Planning, Lands and Heritage.

Heritage

Commonwealth Heritage List, National Heritage List and World Heritage Area

AUS - World, Commonwealth, and National Heritage Areas - World Heritage List, UNESCO. Australia's World Heritage List, © Australian Government Department of Sustainability, Environment, Water, Population and Communities. @ Department of Climate Change, Energy, the Environment and Water.

State and Local Heritage Registers

ACT - ACT Heritage Sites © ACT Government Environment, Planning and Sustainable Development Directorate – Environment. NSW - NSW EPI Heritage, NSW Heritage State Curtilage @ NSW Department of Premier and Cabinet, Heritage Council of NSW. NT - Heritage Register in NT, NT Town Planning Zones Heritage - © NT Government of Australia through Department of Tourism, Sport, and Culture. QLD - Queensland Heritage register boundaries, Queensland Local Heritage. © QLD Government Department of Environment and Science. Data from various local councils compiled by Land Insight Research Team (LIRT). SA - SA Heritage Places, SA Conservation State Heritage Areas, SA Conservation State Heritage Areas, Aboriginal Heritage in SA @Governemtn of South Australia © SA Government Department for Trade and Investment, Department for Environment and Water. TAS -Heritage Tasmania Features theLIST ©State of Tasmania. VIC - VIC Heritage Inventory, VIC Sensitivity Public, VIC Heritage Register © VIC Government Department of Energy, Environment and Climate Action; Department of Premier and Cabinet. WA -WA Heritage Areas, WA Heritage Council Local Heritage Survey, WA Heritage Council State Heritage Survey, WA Aboriginal Heritage Places © WA Government Department of Planning, Lands and Heritage.

Page 30 LI-4836 DDR

Soil and Land Use Information

Soil landscape

Soil Mapping, Information & Landscape - Digital Atlas of Australian Soils, Bureau of Rural Sciences (BRS); Commonwealth Scientific and Industrial Research Organisation (CSIRO) Australian Soil Resource Information System (ASRIS). CSIRO (2024): Australian Soil Resource Information System Website. v1. CSIRO. Data Collection. <u>https://doi.org/10.25919/pdct-9a97</u>

Australian Soil Resource Information System - Australian Soil Classification @ Geoscience Australia, ASRIS Australian Soil Classification @ CSIRO Soil and Landscape Information of Australia @ CSIRO. Australian national map layers, Atlas of Australian Soils - @ ABARES Australian Bureau of Agricultural and Resource Economics and Sciences.

ACT Soil Landscapes, Soil Landscapes of the Canberra 1:100,000 © Australian Capital Territory Government, @ State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water. NSW Great Soil Group (GSG) Soil Type, Australian Soil Classification (ASC) soil type, Strategic Regional Land Use and Soil Profiles, 1:100 000 Soil Landscape Series, 1:250 000 Soil Landscape Series © State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water. NT Northern Territory Land Systems compilation 1:1 000 000, 1:250 000 @ Environment, Parks, and Water Security. QLD Land systems series, Soil Series and Soil and land resource information © The State of Queensland. SA Land Systems & Soil Types, Soils of South Australia @ Department for Environment and Water. TAS Soil Maps of Tasmania 1:100 000 various regions. Dominant Soil Order TAS @ Department of Natural Resources and Environment Tasmania. VIC Victorian Soil type mapping, VIC Land units (various regions), Victorian Land Use Information System, Land Systems of Victoria at 1:100 000 and 1:250 000 @ Department of Energy, Environment and Climate Action. WA Soil Landscape Mapping - Best Available, Soil Landscape Mapping - Systems, WA Soil Group @ Department of Primary Industries and Regional Development.

Soil salinity

ACT - Hydrogeological Landscapes, Soil Landscapes of the Australian Capital Territory @ actmapi ACT gov. NSW -Hydrogeological landscapes mapping, Sydney Metropolitan Western Study Area Hydrogeological Landscapes; New South Wales - Dryland Salinity Assessment 2000 - Assessment of Dryland salinity extent 2020 - © State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water; Australian Bureau of Agricultural and Resource Economics and Sciences. NT - Land Suitability Guidelines @ Department of Infrastructure, Planning and Logistics NT. QLD - Salinity in Queensland @ Environment, land, and water QLD. SA - Land salinity, Dryland salinity, Watertable and non-watertable @ Department for Environment and water SA. TAS - Vulnerable Soils: Salinity Hazard @ thelist Land Tasmania. VIC - Victorian Dryland Salinity Assessment 2000 - Australian Bureau of Agricultural and Resource Economics and Sciences. WA - Dryland salinity in Western Australia - © Department of Primary Industries and Regional Development's Agriculture and Food.

Acid Sulfate Soils

National, State and Local Acid Sulfate Soils Registers

AUS - Acid sulfate Soils - Atlas of Australian Acid Sulphate Soils @ CSIRO (2024): Australian Soil Resource Information System Website. v1. CSIRO. ACT - Environmental Planning Instrument (Acid Sulfate Soils) - © State Government of NSW and NSW Department of Planning, Housing, and Infrastructure. NSW - Environmental Planning Instrument (Acid Sulfate Soils); Land and Soil Capability Mapping for NSW - © State Government of NSW and NSW Department of Planning, Housing, and Infrastructure; © State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water. NT - Acid Sulfate Soils of the Darwin Region; Northern Territory Land Systems (compilation of north_250 and south_1M) - © Northern Territory Government of Australia Environment, Parks, and Water Security. QLD - Acid sulfate soils series - © The State of Queensland Environment and Science. SA - Acid Sulfate Soil Potential - @ Government of South Australia Department for Environment and Water. TAS - Marine Acid Sulfate Soils; Inland Acid Sulfate Soils; Coastal Acid Sulfate Soils; Acid Sulfate Soils - Resource Management and Conservation. VIC - Coastal Acid Sulphate Soils - Department of Jobs, Skills, Industry and Regions. WA - Acid Sulfate Soil Risk Map 100K; Soil landscape land quality - Subsurface Acidification Risk - @ Department of Water and Environmental Regulation; Department of Primary Industries and Regional Development.

Geology and Topography

Naturally Occurring Asbestos NOA

Naturally Occurring Asbestos in NSW © State of New South Wales and Department of Planning and Environment; WA Management of Asbestos In Mining Operations Department of Industry and Resources; SA Carbonate-hosted asbestos occurrences in South Australia: review of geology and implications for mesothelioma [Hendrickx, M.]; Mapping of naturally occurring asbestos in NSW [NSW Trade & Investment, Division of Resources & Energy]

Geology

ACT - New South Wales Seamless Geology dataset (latest version 2.3), various geology data sources 1:25K to 1:100K - © Department of Regional NSW. NSW - New South Wales Seamless Geology dataset (latest version 2.3) - © Department of Regional NSW. NT - Geological digital data 1:100 000 sheet - © Commonwealth of Australia (Geoscience Australia). QLD - Queensland geology detailed surface geology 1:100K and Queensland geology state surface geology 1:2M - © State of Queensland (Department of Resources). SA - 1:100K Geology (surface geology) - © SA Government Department of Energy and Mining, Customer Services. TAS - 1:25K and 1:250K Geology Data and Maps - © TAS Government Department of Infrastructure, Energy, and Resources (Mineral Resources Tasmania). VIC - Geological units represented as two dimensional polygons (1:50,000), and Geological units represented as two dimensional polygons (1:250,000) - © VIC Government Department of Jobs, Skills, Industry and Regions. WA - 1:50K Geological series map, 1:100K Geological series map, and 1:500K State interpreted bedrock geology -© WA Government Department of Mines, Industry Regulation and Safety.

Page 31 LI-4836 DDR

GDE & Hydrogeology Constraints

Groundwater Aquifers

Groundwater Aquifers - The National Hydrogeological Inventory, Commonwealth of Australia (Geoscience Australia). Australian Hydrological Geospatial Fabric @ Department of Climate Change, Energy, the Environment and Water, National Aquifer Network © Commonwealth of Australia (Bureau of Meteorology)

Groundwater Protection Areas and Groundwater Restricted Use Zones

Groundwater Protection Areas – © State of New South Wales and Department of Planning and Environment, NT Environment, Parks and Water Security, QLD Department of Resources, SA Environment Protection Authority (EPA), TAS TasWater, VIC Department of Environment, Land, Water & Planning; WA Department of Water and Environmental Regulation. Groundwater Licences - The Perth Groundwater Atlas and Department of Water (DoW) database © State of Western Australia. NSW -Groundwater Restricted Use Zones: EPI Groundwater Vulnerability, Botany Groundwater Management Zone, Williamtown Management Area, UPSS Environmentally Sensitive Zone, EPI Drinking Water Catchments – EPA NSW; NSW Department of Planning, Industry and Environment. NSW Temporary Water Restrictions Order Botany Sands groundwater - @ The NSW Department of Industry—Lands & Water. NT - Groundwater Restricted Use Zones: NT Water Protection Areas - Department of Environment, Parks, and Water Security. QLD - Groundwater Restricted Use Zones: Water Licences, Groundwater Management Areas, Surface Water Management Areas, Water Plan Catchments - Department of Resources. SA - Groundwater Restricted Use Zones: EPA Groundwater Prohibition Area – EPA SA. TAS - Groundwater Restricted Use Zones: Drinking Catchments, Water Management Plan Areas, Water Districts. VIC - Groundwater Restricted Use Zones: GMA, Groundwater Resources, Water Supply Protection Areas, Water Asset Database, Groundwater Catchments – © EPA Victoria. WA -Groundwater Restricted Use Zones: Gnangara Groundwater Protection, Jandakot Groundwater Protection, Groundwater Areas, PDWSA, Water Licences – Department of Water and Environmental Regulation.

Wetlands

Ramsar Wetlands of Australia - Directory of Important Wetlands in Australia (DIWA) – DCCEEW Department of Climate Change, Energy, the Environment and Water. ACT - Wetland Mapping - © State of New South Wales and Department of Planning and Environment. Important Wetlands - © Australian Capital Territory. NSW - Wetlands, Ramsar Sites, and various sources – © State of New South Wales and Department of Planning and Environment. NSW Environmental Planning Instruments (Wetlands, Coastal Wetlands), © State Government of NSW and NSW Department of Planning, Housing, and Infrastructure NT - Wetlands and Ramsar Sites - @ Department of Environment, Parks, and Water Security. QLD - Local Significant Wetlands and Ramsar Sites - @ Department of Environment and Science. SA - Ramsar Wetlands - @ Department for Environment and Water. TAS - Ramsar Wetlands - @ Land Tasmania. VIC - Victoria Wetlands and Ramsar Sites, @ Department of Energy, Environment and Climate Action. WA - Geomorphic Wetlands (various), Consanguineous Wetlands Suites, Ramsar Sites, @ Department of Biodiversity, Conservation and Attractions.

Groundwater Dependent Ecosystems

Groundwater Dependent Ecosystems (GDE) – Terrestrial (subsurface) and Aquatic (surface) - © Commonwealth of Australia (Bureau of Meteorology).

Groundwater Bores & Lithology details

Groundwater bores and lithology - National Groundwater Information System (NGIS) Dataset. - © Australian Government Bureau of Meteorology. © Water NSW. Groundwater Bores - © Australian Capital Territory. VIC Groundwater Sites, Domestic and stock groundwater bores @ DELWP. WA GW Bores, @ Department of Agriculture Resource Management. SA WaterConnect @ State of South Australia.

Groundwater Salinity

AUS - Groundwater Salinity © Commonwealth of Australia, Bureau of Meteorology. Groundwater Salinity - ACT - Canberra Hydrogeological Landscape, Hydrogeological Landscape Reports, Salinity, ACTmapi @ ACT gov. NSW - Salinity locations and mapping, Hydrogeological landscapes, @ NSW Environment and Heritage. NT - Dryland Salinity Hazard of the Northern Territory, @ Environment, Parks, and Water Security NT. QLD - Salinity in Queensland, @ QLD gov. SA - Annual ground water salinity sampling, @ Landscape South Australia. TAS - Groundwater Salinity - © Department of Natural Resources and Environment Tasmania. VIC - Groundwater Salinity - © State Government of Victoria. Groundwater Salinity - Department of Water and Environmental Regulation. WA - Salinity & Dryland salinity in Western Australia, @ Department of Agriculture and Food WA.

Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes)

Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) - NSW Planning & Environment (Resources & Energy); Department of Energy, Environment and Climate Action. Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) - © The State of Queensland, © Commonwealth of Australia (Geoscience Australia), Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) - © SA Government Department for Environment and Water; Department for Energy and Mining. Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes) - Department of Water and Environmental Regulation, © Government of Western Australia Department of Mines, Industry Regulation and Safety. Other Known Borehole Investigations (Coal Seam Gas (CSG), Petroleum Wells and Other Boreholes), various sources @ Land Insight National Land Use Atlas (NLUA).

Section 3 - Environmental Registers, Licences and Incidents

Contaminated Land Public Register

ACT - Register of Contaminated Sites, Contaminated Land Search (per request) - © Australian Capital Territory, Environment Protection Authority. NSW - Sites Notified as Contaminated, Records of Notices - © State of NSW and the NSW Environment Protection Authority. NT - Contaminated Land Audit, Pollution Abatement Notice - Northern Territory Environment Protection Authority. QLD - Contaminated Land Search (Environmental Management and Contaminated Land Registers - per lot) - © The State of Queensland (Department of Environment, Science, and Innovation). SA - Site Contamination Index, Assessment Areas -© Government of South Australia Environment Protection Authority. TAS - Regulated Sites and Premises, Lutana, and Parts of Hobarts Eastern Shore - © The Crown of Tasmania, Environment Protection Authority. VIC - Priority Sites Register, Pollution Abatement Notice - © EPA Victoria. WA - Contaminated Sites Database - © Government of Western Australia, Department of Water and Environmental Regulation.

Licences, Approvals, & Assessments

ACT - Environment Protection Authorisation Search, Environment Protection Agreement Search - © Australian Capital Territory, Environment Protection Authority. NSW - POEO Public Register - © 2023 State of NSW and the NSW Environment Protection Authority. NT - Environment Protection Licences - © Northern Territory Environment Protection Authority. QLD - Environmental Authorities - © The State of Queensland (Department of Environment, Science, and Innovation). SA - Licences or Authorisations, Environment Protection Orders (EPO), Clean-Up Orders (CUO), Assessment Areas - © Government of South Australia Environment Protection Authority. TAS - Regulated Premises - © The Crown of Tasmania, Environment Protection Authority. VIC - Permissions Register, Audit Reports - © EPA Victoria. WA - Licences and Works Approvals - © Government of Western Australia, Department of Water and Environmental Regulation.

Sites Regulated by Other Jurisdictional Body

Contaminated Legacy Areas

Contaminated Legacy Areas mapped by Land Insight Research team @ Land Insight National Land Use Atlas (NLUA). James Hardie Asbestos Waste Contamination Legacy @ The Australian Asbestos Network, Loose-fill Asbestos register @NSW Department of Climate Change & Water. Loose Fill Asbestos @ ACT Government. Asbestos Register @NT Government. Asbestos Register @ QLD Government. Asbestos Safework @ Government of South Australia. Asbestos Safety WorkSafe @Tasmania Government. Asbestos in Victoria @State Government of Victoria. Asbestos - contaminated sites @ Government of Western Australia Department of Health. National Pollutant Inventory - © Commonwealth of Australia, Department of Agriculture, Water, and the Environment. Parramatta River Catchment Land Use Areas - Compiled by Land Insight derived from Parramatta River Estuary Processes Study (2010); and @ Land Insight National Land Use Atlas (NLUA).

Mines and Quarries (current locations, derelict and abandoned mines and quarries, mine shaft)

Current and Historical location of mines and quarries, derelict mine locations mapped by Land Insight Research team @ Land Insight National Land Use Atlas (NLUA). Australia's abandoned mines: rehabilitated @Australian Geographic. List of mines, List of open-pit mines @ Wikipedia. Goldfields places & Maps- National Library of Australia and State Libraries. A Geospatial Database for Effective Mine Rehabilitation in Australia - Monash University, various authors. Inventory of abandoned mines in Australia @ Australian Government AusIndustry. National Heritage Places - Coal Mines Historic Site @Department of Climate Change, Energy, the Environment and Water. Legacy Mines Program © State of New South Wales through Regional NSW. Map of NSW Mines @NSW Minerals Council. Legacy Mines @ Northern Territory Government. Abandoned mine remediation projects - @ The State of Queensland Government. Map of abandoned mines in Queensland. Queensland's quarry operations @ QLD Government Department of Resources. South Australian Mining History @ Mining Heritage, Former Mines, SARIG @ Government of South Australia @ EPA SA. Mineral Resources Tasmania @ Department of State Growth Mineral Resources Tasmania, Abandoned Mines Rehabilitation in Tasmania @ Department of Infrastructure, Energy and Resources. Tasmania Goldfields dataset. Mineral Occurrences Data @ Tasmania Government. Rehabilitating Mines @ Copyright Victorian Auditor-General's Office, @ Mining Legacies. Historical Mining Activities @ VIC Department of Jobs, Skills, Industry and Regions. Heritage Victoria. Mineral Assessment @ VIC Department of Natural Resources and Environment. Abandoned Mines, Inactive And Abandoned Mine Land Reports - @ WA Department of Mines, Industry Regulation and Safety. Abandoned Mines Program @ WA Department of Energy, Mines, Industry Regulation and Safety. Mines and Mineral Deposits (MINEDEX) - @ WA Department of Energy, Mines, Industry Regulation and Safety

Defence, Military Sites, and UXO Areas

Current and Historical Defence and Military sites mapped by Land Insight Research team @ Land Insight National Land Use Atlas (NLUA). Department of Defence 3 Year Regional Contamination Investigation Program (RCIP) © Commonwealth of Australia, Department of Defence. Defence Sites © Australian Government - Various sources and Department of Defence © Commonwealth of Australia. @ Land Insight National Land Use Atlas (NLUA). National Unexploded Ordnance Program (UXO) @ Australian Government Defence.

Former Gasworks Sites

AUS - Gasworks sites (Various), @ National Trust of Australia, @ National Library of Australia, @ Pocket Oz Sydney Guide, @ wikipedia. Former gasworks site locations mapped by Land Insight Research team @ Land Insight National Land Use Atlas (NLUA). Archaeological database and records © New England Archaeology. Images, Wikipedia, @Flickr images. The historical marker database. ACT - Gaswork sites @ ACT gov. NSW - Former gasworks sites @ EPA NSW, @ NSW Department of Environment and Conservation, Heritage NSW. NT - Gaswork sites @ EPA NT. QLD - Gaswork sites @ DES QLD. SA - Gaswork sites @ EPA SA, @ SA Heritage Places Database Search (maps SA). TAS - Gaswork sites @ EPA TAS, @ Ligthscape Tasmania. VIC - Gasworks sites, sites, and the sites of the site

Page 33 LI-4836 DDR @EPA VIC, @ Development Victoria. WA - Gasworks sites, @EPA WA, @ Department of Water and Environmental Regulation WA.

PFAS sites

AUS – National PFAS Investigation Program – State-wide PFAS Investigation Program @Australian Government, Department of Infrastructure, Transport, Regional Development, Communications and The Arts. PFAS research @ Land Insight National Land Use Atlas (NLUA).

PFAS Investigation and Management Program - PFAS contamination at Department of Defence sites, @ Defence Government. @ Australian Government Defence. Metropolitan Fire Brigade stations. Potential historical use of PFAS @ Australian Government.

PFAS Taskforce. Airservices Australia National & PFAS Management Program, Airservices Australia.

ACT - Potential PFAS contaminated sites in the ACT - © ACT Environment Protection Authority. NSW - The NSW Government PFAS Investigation Program, © State of NSW and the NSW Environment Protection Authority. NT - PFAS National Environmental Management Plan (NEMP) @ NT EPA. QLD - PFAS site investigations, PFAS in QLD, @ QLD government. SA - Per- and polyfluoroalkyl substances (PFAS), @SA EPA. TAS - PFAS Contamination, @ TAS EPA. VIC - PFAS management sites, PFAS contamination at Department of Defence sites @ VIC EPA. WA - PFAS Investigations in Western Australia, @ WA government, @ WA DWER.

Section 4 - Potentially Contaminated Areas

Potentially Contaminated Areas, Activities (PCA) - Notifiable Activities Locations and Description

The research database includes Potentially Contaminating Activities or businesses, industries, and activities that have been identified as having an increased likelihood of causing contamination. Many of these are considered notifiable activities, or activities that require regulation to operate. This database is meticulously curated from a variety of information sources and undergoes rigorous validation procedures carried out by our team of scientists, quality assurance professionals, and technical experts, ensuring its accuracy and reliability. The PCA database systematically identifies and classifies site locations into fifty differing categories, including:

Abattoirs, Abrasive Blasting, Agriculture/Horticulture, Airports, Asbestos, Asphalt or Bitumen, Batteries, Breweries/Distilleries, Cement, Concrete or Lime, Cemeteries, Chemicals, Coal Yards, Depots and Storage Yards, Dry Cleaners, Electrical or Electrical Components, Explosives and Dangerous Goods, Extractive Industries, Fire and Rescue, Food Manufacturing, Foundry, Smelting or Refining, Fuel Terminals & Depots, Glass, Ceramics and Plastic, Gun, Pistol or Rifle Ranges, Hospitals and Research Facilities, Landfill Sites, Livestock Dips, Mechanical and Automotive, Metal Fabrication and Treatments, Oil and Gas, Other Infrastructure Facilities, Paint Industries, Petrol Stations, Pharmaceuticals, Port and Marina Operations, Power Plants, Printing and Photography, Rail Industry and Associated Activities, Rubber and Tyre, Storage Tanks, Substations and Switching Stations, Textiles and Tannery, Timber, Pulp and Paper Works, Waste and Recycling Facilities, Wastewater Treatment Facilities.

Potentially Contaminating Activities and Locations (PCA) - © Google; Nearmap data; @ Datajet Australia Pty Ltd - with permission and @ Land Insight National Land Use Atlas (NLUA).

The Potentially Contaminating Activities (PCA) is a unique database proprietary to Land Insights. Please note that <u>not all</u> sources are included; only the most significant or larger databases are referenced for brevity. Individual research on each of these sources has not been included due to the comprehensive nature of the list.

Airports – Designated international airports in Australia @ Department of Infrastructure, Transport, Regional Development, Communities, and the Arts Australian Gov. List of airports Australia @ Wikipedia. Australia Airports Map @ Sydney-australia biz

Catte Dips: Cattle Dip Site Locator Northern Rivers Region - © State of New South Wales through NSW Department of Industry; and @ Land Insight National Land Use Atlas (NLUA).

Dry cleaners: Dry cleaners @ Drycleaning Institute of Australia; Lawrence Dry Cleaners Locations @ Lawrence Dry Cleaners, and @ Land Insight National Land Use Atlas (NLUA).

Landfill Sites: NSW - Landfill sites @ EPA NSW. QLD - Location of waste sites | Environment, land and water, Closed landfill sites @ QLD gov. SA - Landfill map, EPA SA. TAS - Landfills @ EPA TAS. VIC - Victorian Landfill Register - © EPA Victoria. Waste and Recycling Facilities: National Waste Management Facilities - © Commonwealth of Australia (Geoscience Australia), Australia's waste and resource recovery infrastructure @ DCCEEW @ Land Insight National Land Use Atlas (NLUA).

Petrol Stations: National Liquid Fuel Refineries and Facilities, Liquid Fuel & Aviation Fuel Depots/Terminals, National Liquid Fuel Refineries - © Commonwealth of Australia (Geoscience Australia), Petrol Stations @ Digital Atlas of Australia. Fuelcheck @ Fair Trading NSW gov. @ Land Insight National Land Use Atlas (NLUA).

Power Plants: AUS @ Powerplants Australia. QLD Power Plants map of Queensland @Department of Energy and Climate. Various sources. @ Land Insight National Land Use Atlas (NLUA).

Waste and Recycling Facilities: National Waste Management Facilities - © Commonwealth of Australia (Geoscience Australia), Australia's waste and resource recovery infrastructure @ DCCEEW. @ Land Insight National Land Use Atlas (NLUA). NSW - Waste facilities @ NSW EPA. NT - Waste & Recycling NT, City of Darwin. QLD - Public waste and recycling facilities in Queensland @ Queensland Government Open Data Portal. SA - Waste disposal, Waste depots @ EPA SA. TAS - Waste Centres, Waste Disposal Facilities @ EPA TAS. VIC - Victoria's waste and resource recovery infrastructure, Waste Facility Locations Victoria's Waste and Recycling Infrastructure Map © Recycling Victoria. WA @ VIC Gov. WA - Waste locations and recycling centres @ DEW WA. @ Land Insight National Land Use Atlas (NLUA).

Page 34 LI-4836 DDR

Historical Business Directories

AUS - AUS Historical Commercial & Trade Directory Data - various sources, see below. UBD business & street directory, Sands & McDougall directories, @ Australian Business Datalist ABDL (with permission)

ACT - 1971, 1981 & 1991 Telecom Australia Yellow Pages Country NSW Directories - Permission for use Sensis 2017.

2005 - 2022 - @ Australian Business Datalist ABDL - with permission

NSW – Sydney Metropolitan Area: 1932-1933 John Sands Sydney Trades Directory

1940 & 1950 Commonwealth of Australia Telephone Directory Sydney

1960-1961 Telecom Australia Pink Pages Sydney – Permission for use Sensis

1970-1971 United Business Directories Sydney – Licenced under Hardie Grant

1974-1975 NSW Post Office Yellow Pages Sydney Buying Guide and Commercial/Industrial Directories – Permission for use Sensis 1980-1981 & 1990-1991 Telecom Australia Yellow Pages Sydney – Permission for use Sensis. 2005 – 2022 @ Australian Business Datalist ABDL

NT - 2005 - 2022 @ Australian Business Datalist ABDL - with permission

QLD - 1865, 1890, 1900, 1906, 1916, 1919, 1924, 1925, 1970 - Pugh's Almanac (copyright expired)

1970-1971 - Brisbane Telephone Directory (copyright expired)

2005 - 2022 - @ Australian Business Datalist ABDL - with permission

SA - 1930, 1935, 1944-45, 1950, 1955, 1960, 1965, 1970, 1973 - Sands & McDougall Melbourne Trade Directory (copyright expired) 2005 - 2022 @ Australian Business Datalist ABDL - with permission

TAS - 1896-1897, 1900, 1905, 1910, 1915, 1920, 1925, 1930, 1935, 1940-41, 1945-46, 1948 - Wises Post Office Directory (copyright expired)

2005 - 2022 @ Australian Business Datalist ABDL - with permission

VIC - 1900, 1905, 1915, 1925, 1935, 1945, 1955, 1965, 1975 - Sands & McDougall Melbourne Trade Directory (copyright expired) 1960-1961, 1970-1971 - Post Office Pink Pages Melbourne – Permission for use Sensis 2017

1981-1982, 1990-1991 - Telstra Yellow Pages Melbourne - Permission for use Sensis 2017

Telstra Yellow Pages Melbourne - Permission for use Sensis 2017

2005 - 2022 @ Australian Business Datalist ABDL – with permission

WA -2005 - 2022 @ Australian Business Datalist ABDL - with permission

Section 5 - Natural Hazards

Fire Hazards

AUS - Bushfire Prone Areas - © Australian Government Department of Climate Change, Energy, the Environment and Water. Bushfire History - © Commonwealth of Australia (Geoscience Australia). ACT - Bushfire Prone Areas - © ACT Government Environment, Planning and Sustainable Development Directorate. Bushfire History - NPWS Fire History - Wildfires and Prescribed Burns © State Government of NSW and Department of Planning, Industry and Environment. NSW - Bushfire Prone Areas - © State of New South Wales (NSW Rural Fire Service). Bushfire History - © State Government of NSW and NSW Department of Climate Change, Energy, the Environment and Water, Wildfires and Prescribed Burns - © State of New South Wales, National Parks, and Wildlife Management Unit. NT - Bushfire Prone Areas - © NT Government of Australia through Department of Environment and Natural Resources. Bushfire History - ©The Commonwealth of Australia through the Department of the Environment and Energy. QLD - Bushfire Prone Areas - © Commonwealth Scientific and Industrial Research Organisation (CSIRO) in conjunction with the State of Queensland (Queensland Fire and Emergency Services). Bushfire History - © State of Queensland (Department of Environment and Science). SA - Bushfire Prone Areas - © SA Government Country Fire Service (CFS), Department of Planning, Transport, and Infrastructure. Bushfire History - © SA Government Department for Environment and Water. TAS - Bushfire Prone Areas - © Tasmania Fire Service. Bushfire History - © Department of Environment, Parks, and Water Security. VIC - Bushfire Prone Areas - © VIC Government Department of Environment, Land, Water and Planning; Department of Transport, Planning and Local Infrastructure. Bushfire History - © VIC Government Department of Transport, Planning and Local Infrastructure. WA - Bushfire Prone Areas - © WA Government Department of Fire and Emergency Services. Bushfire History - © WA Government Department of Fire and Emergency Services.

Flood Hazard

AUS - Flood Planning Area, Other Flood Studies, and Flood History - @ Commonwealth of Australia, @ Bureau of Meteorology. This dataset is digitised and/or aggregated from various verified Council Records, Aerial Photography Interpretation, Flood Imagery Maps, Topographic Maps, Historic Parish Maps, publicly available technical reports, and information digitised by the Land Insight Research team. @Land Insight Research. ACT - Flood Risk and Flood map information © ACT Government Environment, Planning and Sustainable Development Directorate - Environment. NSW - NSW Flood Data Portal @NSW State Emergency Service, © State Government of NSW, NSW Department of Climate Change, Energy, the Environment and Water; and NSW Department of Planning, Housing, and Infrastructure; @ NSW Government Spatial Services. NT - Floodplain maps, Flood monitoring © NT Government of Australia through Department of Environment and Natural Resources, Department of Lands, Planning, and the Environment. QLD - QLD Flood mapping, Historical flood mapping © The State of Queensland, Department of Resources, Queensland Reconstruction Authority. Flood data series and Flood data overlays (various) Queensland Open Data portal. SA - Flood Awareness map, Flood Risk © Crown in right of the State of South Australia, @ Government of South Australia, Department for Environment and Water. Flood mapping (various) SA Data Directory portal. TAS - Tasmania Flood Mapping Projects Reports @ Tasmania State Emergency Services. Floodplain Mapping in Tasmania, Flood Inundation Extent models. © Department of Natural Resources and Environment Tasmania. TAS TheList dataset portal. VIC - Victoria Flood mapping and overlays. © Copyright State Government of Victoria various datasets, Victoria State Emergency Service; Department of Energy, Environment and Climate Action, Department of Environment, Land, Water & Planning. Flood data (various) VIC data portal (data.vic). WA - Floodplain mapping tool, Landgate Flood Map. © Government of Western Australia, @ Department of Water and Environmental Regulation. Flood data (various) WA data portal.

Erosion Hazard

AUS - Soil Erosion Hazards, © Commonwealth of Australia (Geoscience Australia), @ Agriculture DAFF @Australian Government. ACT - Soil and Land Resources of the Australian Capital Territory, © State of New South Wales and Department of Planning and Environment. NSW - Land Soil Capability, Vulnerable lands, © State of New South Wales and Department of Planning and Environment NT - Land System, Soil Conservation, © Department of Environment, Parks, and Water Security. QLD - QLD Erosion prone areas, Coastal and Inland erosion areas, © The State of Queensland. SA - Landscape salad, Mass movement and soil Attributes, Water and Wind Erosion, © Department for Environment and Water. TAS - Coastal Erosion Hazard, Landslide Planning Map, Water and Wind Erosion Statewide map, © Department of Natural Resources and Environment Tasmania. VIC -Geomorphology of Victoria, © VIC Government Department of Jobs, Skills, Industry and Regions. WA - Soil Landscape Land Quality, Land capability assessment, Land instability Risk, Water Erosion Riks, Wind Erosion Risk, © WA Government Department of Primary Industries and Regional Development.

For more information visit www.landinsight.co or contact orders@landinsight.co.

Page 36 LI-4836 DDR

Terms and Conditions

Terms and Conditions

1. Land Insight & Resources (Land Insight) will perform the Services in accordance with these terms and conditions

2. By submitting the Application Form, the User acknowledges that it has read and understood these terms and conditions and agrees to be bound by them.

3.Land Insight reserves the right to change these terms and conditions. Any change shall be effective upon notice, which may be given by Land Insight posting such change on the Website, or by direct communication with the User.

<u>Services</u>

4.Land Insight agrees to undertake the Services using due skill, care, and diligence.

5. The User assumes the sole risk of making use of, and/or relying on, the report and the Services. Land Insight makes no representations about the suitability, completeness, timeliness, reliability, legality, or accuracy of the Services.

6.Unless Land Insight agrees expressly otherwise:

(A) The Services are solely for the use and benefit of the User; and

(B) Land Insight does not accept any liability, whether directly or indirectly, for any liability or loss suffered or incurred by any third par ty placing any reliance on the performance of the Services or any Documents or material arising from or in connection with the Services. 7. The User warrants to Land Insight that it will not use the Services for any purpose that is unlawful or is otherwise inconsistent with these terms and conditions.

8. The User will not alter in any way or provide a copy of the report, or any Document prepared by Land Insight to any other person without Land Insight's prior written consent.

Payment Terms

9. The Fee will be payable at the time of submitting the Application Form unless invoicing payment terms have been negotiated prior to purchase with Land Insight.

10. The User and Land Insight may agree in writing to vary the Services. The fee for each variation shall be agreed between Land Insight and the User.

11. The User agrees to pay Land Insight the Fee, including the fee for any variation requested in accordance with clause 12.

12. If the User's rights are terminated and the User has made an advance payment, Land Insight will refund the User a reasonable

proportion of the balance as determined by Land Insight in relation to the value of Services already provided.

13. GST at the prevailing rate is payable in addition to the Fee. The User agrees to pay any other applicable taxes, duties or governmentimposed fees related to the User's use of the Services.

Intellectual Property

14. Land Insight owns all intellectual proper ty in the Report and arising from or in connection with the Services.15.Land Insight grants the User a royalty free licence to use Land Insight's intellectual proper ty for that User's personal assessment of its Proper ty(s) only.

Privacy Policy

16. Upon submitting the Application Form the User consents to Land Insight's use of the personal data provided by the User for the purposes of providing the Services.

17. The Reliance on the report, the use of the Services and the use of Land Insight's Website is at the User's own risk. The User accepts that Land Insight does not guarantee the confidentiality of any communication or information transmitted through the use of the Website.

18. Land Insight will not provide to any third par ty any personal data provided by a User without the User's permission.

19. The User acknowledges that any feedback provided to Land Insight over the Website is not confidential and that Land Insight has the right to publish, reproduce, disseminate, transmit, distribute and copy (in whole or in part) any such feedback without the approval of the User.

20. Land Insight assumes no responsibility or liability for any content, communications or feedback submitted by a User over the Website. If a User has submitted objectionable content, communications or Feedback, Land Insight may, in its sole discretion, terminate that User's account, take legal action, or notify the appropriate authorities or parties, without prior notice.

Third Party Services

21. The User accepts that, although the Website may contain or provide information regarding applications, products and/or services provided or offered by third par ties, Land Insight does not recommend or endorse any such third par ty applications, products, and/or services.

22. The report contains content provided to Land Insight by other par ties (Third Par ty Content). Land Insight is not responsible for, does not endorse and makes no representations either expressly or impliedly concerning the accuracy or completeness of any Third Par ty Content. You rely on the Third Par ty Content completely at your own risk.

Limit and Extent of Liability

23. Land Insight's liability is limited to the amount of the Fee. Liability arising in the provision of the Services is reduced to the extent that it arises out of or in connection with any negligent act or omission by the User.

24. Neither par ty is liable to the other for loss of actual or anticipated revenue or profits, increased capital, or financing costs, increased operational or borrowing costs, pure economic loss, exemplary or punitive damages or indirect or consequential damages or loss. 25. In no event shall Land Insight or any directors, officers, employees or agents be liable for any indirect, punitive, incidental, special, or consequential damages arising out of or in any way connected with the use of the Website, any delay or inability to use the Website, any information available on the Website, or otherwise arising out of the utilisation of the Website, whether based in contract, tor t, strict liability, or otherwise, even if Land Insight has been advised of the possibility of such damages. The negation of damages set forth herein is a fundamental element of the basis of the bargain between Land Insight and the User. The Services would not be provided without such limitations.

Page 37 LI-4836 DDR
Property Verification

26. The User accepts that the Services provided do not take into account any information relating to the actual state or condition of the Property.

27. The User acknowledges that the Services are not to be interpreted as commenting on the physical characteristics or condition of the Proper ty, any particular purpose or use of that Proper ty or the saleability or value of the Property.

Termination and Modification

28. Land Insight reserves the right in its sole discretion to terminate, block or restrict the User's use of the Services or any portion thereof, for any reason, and without notice. In addition, Land Insight reserves the right in its sole discretion to terminate or modify any part of the Website without notice, for any reason.

<u>Anti-Hacking</u>

29. The User agrees not to directly or indirectly, attempt to or disrupt, impair, interfere with, alter, or modify the Website or any of its content.

30. The User agrees not to allow, aid or abet third par ties to directly or indirectly, attempt to or disrupt, impair, interfere with, alter or modify the Website or any of its content, or obtain access to any information regarding any User or any other report issued to a User.

Complaints

31. Any complaints in relation to the Services should, in the first instance, be in writing and addressed to Land Insight Customer Service at: info@landinsight.co. Land Insight will respond to any such complaints in writing as soon as practicably possible.

General Matters

32. These terms and conditions are governed by and will be construed and enforced in accordance with the laws of the State of New South Wales, Australia. If any dispute, controversy, or claim arises out of or relating to these terms and conditions, whether sounding in contract, tor t or otherwise, it shall be resolved by use of an alternative dispute resolution procedure acceptable to both par ties with the assistance of a mediator. If the dispute has not been resolved to the satisfaction of either par ty within 60 days of initiation of the procedure or if either par ty fails or refuses to participate in or withdraws from participating in the procedure, then either par ty may refer the dispute to the court.

33. These terms and conditions apply to all Services provided by Land Insight.

34. If there is any inconsistency between these terms and conditions and any other document or agreement between the parties, these terms and conditions will prevail.

35. These terms and conditions represent the entire agreement between the par ties.

36. The User authorises Land Insight to destroy Documents which Land Insight has prepared or holds in connection with the Services 7 years after the last date on which the Services were provided.

37. If any of the terms of the Application Form or the terms and conditions are invalid, unenforceable, or void, the relevant term must be read down to the maximum extent possible or severed from the rest of the Application Form or these terms and conditions. 38. These terms and conditions can only be amended or varied by a written document signed by both par ties.

39. Neither par ty may assign or transfer any rights or obligations arising in the provision of the Services or these terms and conditions without the other party's written consent.

<u>Defined Terms</u>	
Application Form	Means the form and accompanying information provided on the Website, completed, and submitted by
	the User to request the Services.
Document	Includes a report, and any other written or electronic document.
Fee	Means the amount set out in the Application Form or confirmed via an invoice.
Property	Means the proper ty to which the Services and the report relate.
Report	Means the Document prepared by Land Insight and provided to the User which contains the environmental and development data which is relevant to the Proper ty.
Services	Means the review of data and information on which the report is based, and the preparation and provision to the User of the report.
Website	Means Land Insight's online site, which is: www.landinsight.co
User	Means the person(s) set out in the Application Form including that person's permitted successors.

Appendix A

1

REPORT MAPS

106 Princes Highway Milton, NSW

PROPERTY SETTING

Subject area **>** Hospital and Health Care

(3)

Water Bodies

Residential and Aged Care Service

SP2 - Infrastructure

SP3 – Tourist

٦

Land Insight do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

Г

Г

R2 - Low Density Residential

🔲 R5 – Large Lot Residential

R3 – Medium Density Residential

C2 - Environmental Conservation; C2, Environmental Management

Land Insight

📃 E1 – Local Centre

Г

Subject area Overlays Acid Sulfate Soils C Additional Permitted Uses

Coal Seam Gas Exclusions

Maximum Building Height (m) Minimum Lot Size (sq m) Minimum Water Use Standard (%) Riparian Lands and Watercourses

Scenic Protection SEPP Land Application Terrestrial Biodiversity

Land Insight

Heritage

2025 Land Insight (LI) www.landinsight.co | 28/05/2025 | Data source: Please refer to 'Digital Data Sources' in the Produ

Subject area

State and Local Heritage Registers Heritage Register

MAP 1.4a

2025 Land Insight (LI) www.landinsight.co | 28/05/2025 | Data source: Please refer to 'Digital Data Sources' in the Product Guide

Subject area

Radon Level (Bq/m3)

Code BP

Acid Sulfate Soils

Subject area

Atlas of Australian Acid Sulfate Soils

 Low Probability of occurrence

Coastal Acid Sulfate Soils Class 5

PROPERTY SETTING

MAP 1.5

Subject area Topographic Contour (m) Geology Code Pshs

Puim Q_avf

0 50 100 150 200 250

HYDROGEOLOGY

Groundwater Dependent Ecosystems & Hydrogeology Constraints

Ecosystems that rely on Subsurface presence of Groundwater

High potential GDE - from regional studies Moderate potential GDE – from regional studies

Low potential GDE – from regional studies Aquifer type

E

Fractured or fissured, extensive aquifers of low to moderate productivity

Groundwater and Other Bores

Subject areaOther borehole/monitoring well location

Salinity Class No Data

Contaminated Land Public Register

Subject area

0 100 200 300 400 S

Licences, Approvals & Assessments

Subject area

Sites Regulated by Other Jurisdictional Body

Subject area

Other Potential Hazard Sources

Subject area

POTENTIALLY CONTAMINATED AREAS

Subject area Potentially Contaminating Activities Manufacturing and Industrial Facilities Petrol Stations and Fuel Terminals

Data is current as when this report was created. However due to the turnover of business locations, some addresses may be former.

Land Insight

Fire Hazards

MAP 5.1

Subject area

Vegetation Category 2

Vegetation Buffer

Vegetation Category 3

Flood Hazard

🔲 Subject area

Erosion Hazard

Subject are Wind Erosion Risk Low Very Low

Water Erosion Risk Very High Moderate

Landslip Erosion Risk

Appendix B

HISTORIC IMAGERY

106 Princes Highway Milton, NSW

0 25 50 75 100 125m

0 25 50 75 100 12

Subject area

0 25 50 75 100 125m

0 25 50 75 100 125m

0 25 50 75 100 125m

Subject area

Subject area

0 25 50 75 100 125m

Subject area

Subject area

0 25 50 75 100 125m

Subject area

0 25 50 75 100 125m

Subject area

Subject area

0 25 50 75 100 125m

Historic Aerial Photograph – 2025

Subject area

0 25 50 75 100 125m

Land Insight do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

1969–1991 1:50,000 Topographic Map (Milton 8927–2N)

Land Insight do no warrant the accuracy or completeness of information in this publication and any person using or relying upon such information does so on the basis that this company shall bear no responsibility or liability whatsoever for any errors, faults, defects or omissions in the information.

Appendix C Photographic Log

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW Project No. PS224991

Photo No.	Date
1	27/05/2025

Description

General overview of external area of the site (eastern side of site facing north).

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Photo No.	Date	
3	27/05/2025	
Description		
General overvi area of the site side of site faci	(north-western	

Client Name	Site Location
Taylor Construction Group Pty Ltd	106 Princes Highway, Milton NSW

Project No. PS224991

Photo No.	Date	
5	27/05/2025	

Description

General overview of external area of the site (northern side of site facing north-east).

27/05/2025

Description

General overview of concrete structure (MUH-E building) used for storage of flammable liquids (eastern side of site facing north-east).

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW Project No. PS224991

Photo No.	Date
7	27/05/2025

Description

Close up view of concrete structure (MUH-E building) used for storage of flammable liquids (eastern side of site facing south).

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW **Project No.** PS224991

Photo No.	Date
9	27/05/2025

Description

General overview of the large liquid petroleum gas (LPG) above ground storage tank (AST), with the diesel generators in the background (western side of site facing south).

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Photo No.	Date	
11	27/05/2025	
Description Overview of the vicinity of the sinext to the Milto Community Cal Centre building of site facing wo	e general mall LPG AST, on Ulladulla ncer Services (western side	

Client Name

13

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Client Name

Taylor Construction Group Pty Ltd

Site Location 106 Princes Highway, Milton NSW

Appendix D Borelogs

	١		1	5							H	IA	ND AUGER: BH01
													Sheet 1 of 1
		oject catic				pital Preliminary Site Ir Highway, Milton, NSW			n				Date Started: 27/5/2025
		ient: b No	.:	Taylo PS224		ruction Group Pty Ltd				tractor: Drill Rig: nation: -90°			Date Completed: 27/5/2025 Logged: AJ
F			Dril	ling		Sampling				Field Material Desc	riptio	on	
	MEINOU	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE		STRUCTURE AND ADDITIONAL OBSERVATIONS
WSP-AU 6.00.0.LB GLB Log IS AU BOREHOLE 3 PS224891_GINT_LOGS GPJ <-OrawingFile>> 5/6/2/05 14:44 10.03.00.09 Dargel Lab and In Situ Tool - DGD Ub: WSP 6.00.0 2024-06-03 Prj: WSP 5.04.1 2023-06-14	Ϋ́Ε		ents	0.0	0.15	ES 0.05-0.15 m BH01_0.05-0.15				FILL Sandy CLAY: medium plasticity, dark brown, sand is coarse grained; trace fine gravel. Hole Terminated at 0.15 m			FILL . . . <t< th=""></t<>
WSP-AU 6.00	Comments Checked Date												

		1	1	5							Н	A	ND AUGER: BH	02
	Þ	niect				nital Preliminany Site	nvo	stinatio	n				Sheet 1 of	1
	Lo	oject ocatio	on:	106 F	rinces F	pital Preliminary Site I lighway, Milton, NSW							Date Started: 27/5/2	
		ient: b No		Taylo PS22		uction Group Pty Ltd				itractor: Drill Rig: ination: -90°			Date Completed: 27/5/2 Logged: AJ	025
F				ling		Sampling	_			Field Material Desc	iptio	n	1	
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	DEPTH RL	Sample or Field test	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS	
F				0.0 —		ES 0.00-0.10 m BH02_0-0.1				FILL Silty CLAY: medium to high plasticity, dark brown.			FILL	
WSP-AU 6.000 LIB-GLB Log IS AU BOREHOLE 3 PS224991_GINT_LOGS.GPJ < <dnawingfile>> 5/6/2025 14.44 10.03.00.09 Dagpi Lab and in Situ Tool - DGD Lib: WSP 6.00.0 2024-06-03 Pij: WSP 6.04.1 2023-06-14</dnawingfile>	HA			0.1	0.15	BH02_0-0.1 ES 0.20-0.25 m BH02_0.2-0.25 ES 0.30-0.35 m BH02_0.3-0.35				FILL Gravely SAND: coarse grained, orange brown, gravel is sandstone, fine; inclusions of quartz. FILL CLAY: low plasticity, dark brown. Hole Terminated at 0.35 m	D to M	St		
WSP-AU 6.00.0 LIB.GLB	Comments Checked Date													

			1	5							Η	A	ND AUGER: BH03
	_												Sheet 1 of 1
	Lo	oject ocatio	on:	106 P	rinces H	bital Preliminary Site I lighway, Milton, NSW							Date Started: 27/5/2025
		ient: b No		Tayloi PS224		uction Group Pty Ltd				tractor: Drill Rig: nation: -90°			Date Completed: 27/5/2025 Logged: AJ
Ē			Dril	ling		Sampling	_			Field Material Desci			
	METHOD	PENETRATION RESISTANCE	WATER		<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY	STRUCTURE AND ADDITIONAL OBSERVATIONS
	HA				0.10	ES 0.10-0.20 m BH03_0-0.1				FILL Silty CLAY: high plasticity, brown.	M to	_	FILL - - - <t< th=""></t<>
WSP-AU 6.00.0 LIB.C	Comments Checked Date												

			1	5							Η		ND AUGER: BH04
	Dr	roject		Lilladi		pital Preliminary Site I	nvo	stigatio	n				Sheet 1 of 1
	Lo	oject ocatic lient:	on:	106 F Taylo	Princes H r Constr	lighway, Milton, NSW uction Group Pty Ltd				stractor: Drill Rig:			Date Started:27/5/2025Date Completed:27/5/2025
╞	Jo	b No		PS22	4991			1	Incl	ination: -90°			Logged: AJ
┝		z		ling		Sampling			Ы	Field Material Desc			
	METHOD	PENETRATION RESISTANCE	WATER	DEPTH (metres)	<i>DEPTH</i> RL	SAMPLE OR FIELD TEST	RECOVERED	GRAPHIC LOG	GROUP SYMBOL	SOIL/ROCK MATERIAL DESCRIPTION	MOISTURE	CONSISTENCY DENSITY	STRUCTURE AND ADDITIONAL OBSERVATIONS
F				0.0 —		ES 0.00-0.10 m BH04_0-0.1		\bigotimes		FILL Clayey SAND: coarse grained, dark brown.			FILL
6.00.0 2024-06-03 Prj: WSP 5.04.1 2023-06-14	НА				0.10	ES 0.10-0.30 m BH4 0.1-0.3 QA100				FILL Sandy CLAY: high plasticity, dark brown, sand is coarse grained.	D to M		0.10-0.30: QA100
WSP-AU 6.00.0 LIB.GLB Log IS AU BOREHOLE 3 PS224991_GINT_LOGS.GPJ < <drawingfile>> 5/6/2025 14.44 10.03.00.09 Datgel Lab and In Situ Tool - DGD LIb: WSP</drawingfile>				-0.3				×××		Hole Terminated at 0.30 m			
WSP-AU 6.00.0 LIB.C	Comments Checked Date												

Appendix E Laboratory Certificates

AS	CHAIN OF CUSTODY
	ALS Laboratory

1.54

REAL Property and the Pro-

.

ground part of											
CLIENT: WSP		RNAROUND REQUIREMENTS :						FOR LABORATORY USE ONLY	(Circle)		
OFFICE: Byteny	CERA Ultra	sdard TAT may be longer for some tests (Trace Organics)	9- IXI Non Standard or urgent TAT (3 day TAT - 02/06/2	025):	-		Controly Seed Intact?	Yes	140	26.0
PROJECT: PS224991	AL	S QUOTE NO .:		cod	SEQUENCE N	AUMBER. (Circle	0	Pres kar / hozen kar bricka present upon nacept?	Yee	310	166
ORDER NUMBER:		0		coci 1	3 3	4 5 6	7	Pandies Limpla Temperature in Recei	d.	C	
PROJECT MANAGER: Andrew Jacovides	CONTACT PH: 0	448 187 593		0P: 1	23	4 5 0	17	Other schumerts:			_
SAMPLER: Andrew Jacovides	SAMPLER MOBI	LE: 0448 187 593	RELINQUISHED BY:	RECEIVED		1	REL	INQUIBHED BY:	RECEIVED BY:	1	
COC emailed to ALS? (YES / NO)	EDD FORMAT (o	r default): ESDAT, excel, pdf	Andrew Jacovides	1An	0	/					
Email Reports to (will default to PM if no other addresses are fator	i): andrew Jacovides@wsp.com		DATE/TIME:26/05/2025	DATE/TIM		1	DAT	E/TIME:	DATE/TIME:		
Email Involce to (will dufault to PM If no other addresses are listed)(29 14	IL	loc					
							-				

-

COMMENTE/SPECIAL HANDLING/STORAGE OR DISPOSAL:

ALS				CONTAINER INFORMATION	ANALYSIS REQUIRED including SUITES (NII) Suite Codes and the land of the Where Metals are required, specify Total curfittered by the required in the observed of the required in the second					Additional Information		
LAB ID	SAMPLE ID	DATE / TIME	MATRIX	TYPE & PRESERVATIVE (roler to codex below)	TOTAL CONTAINERS	5-26 - TRH, BTEX, PAH, MD	Asbestos P/A	EP231X - PFAS Full Suite	SW S	AI	Comments on Illusiy containment levels. Stations, or samples requiring specific QC analysis etc.	
1	BH01_0.05-0.15	29/04/2025	5		3	.8	ж	×				
2	BH02_0-0.1	25/04/2025	8		3	×.	ж	×			onmental Division	
3	BH02_0.2-0.25	29/04/2025	5		3	ж	ж	×		Sydn	ey rk Order Reference	
4	BH02_0.3-0.35	29/04/2025	5		3	×	х	×		E	S2515873	
5	BH03_0-0.1	29/04/2025			3	×	к	х.				
6	BH3_0.1-0.2	29/04/2025			3	×	х	×	1000			
7	BH04_0-0.1	29/04/2025	s		а	ж	х	×			112/45/43	
8	BH4_0.1-0.3	29/04/2025			з	×	к	×				
9	QA100	29/04/2025	. 5		2	×		×		eepho	ne : + 81-2-8784 8555	
01	Rinsata	29/04/2025	A	(Forward Lab / Sola WONEW	CAST	E		×	х			
			(int)	nelysis: EA200.								
			Organi	eil By / Date:								
			Reling	ished By / Dawa			1.0			- A -		
	Connot			te Courier-				÷				
			MUN	100 August	31	3	8	10)	1			

	T: WSR		CARR	IER:	ATC	Environmental Division
	CT/QUOTE: PS224991	Q.		OTE #:		Sydney Work Order Reference
	NOT NAME: Another Jacuvioles	*	AWB #	6		ES2515873
	ER NAME: AJ		Theory	SKIES		
	ER NUMBER:				ies: Hand Ch	
_	ES RECEIVED BY: OT				RS: Wel 502. S: 224	100 / 40 AST
	TIME RECEIVED: 28/5725 CLIENT SERVICES NO	TIFIED BY:		ERATUR		
	1635 SAMPLE DETAIL	LS		8	ADDITIONAL INFORMATION / COMM	Гыяртося: - 61-2-6764 8555 жито:
LAB ID	SAMPLE ID	DATE	MATRIX	NUMBER OF CONTAINERS	 MICRO BIOSECURITY BROKEN CONTAINERS COC EMAILED ALS COMPASS 	
1	BH04 - 0.1-0.3	2715	·S		HOPE soil Det Da 112 have	
2	BH01-0.05-0.13	2715	5		HOPE soil Dart. OG, while bags	
3	Kinstale.	2715	w	5	NP PI IP.	
4		Chis	-	-	NP, PG, GP.	

110.

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2515873		
Client Contact Address	: WSP Australia Pty Ltd : ANDREW JACOVIDES : LEVEL 27 680 GEORGE STREET SYDNEY 2000	Contact: AndrewAddress: 277-28	mental Division Sydney Wotherspoon 9 Woodpark Road Smithfield ustralia 2164
E-mail Telephone Facsimile	: andrew.jacovides@wsp.com : :	Telephone : +61-2-8	.wotherspoon@alsglobal.com 3784 8555 3784 8500
Project Order number	: PS224991 : PS224991	Page : 1 of 3 Quote number : ES202 2025)	5PARBRINSW0002 (WSP MSA
C-O-C number	:	QC Level : NEPM	2013 B3 & ALS QC Standard
Site Sampler	: : ANDREW JACOVIDES		
Dates Date Samples Receiv Client Requested Due Date	· · · , · · · · · ·	Issue Date Scheduled Reporting Date	: 02-Jun-2025 : 03-Jun-2025
Delivery Detain Mode of Delivery No. of coolers/boxes	/s : Carrier : 1	Security Seal Temperature	 Not Available 12.5°C, 8.4°C, 4.6°C - Ice present
Receipt Detail	: Hard Esky	No. of samples received / analyse	•

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- TRH semi volatiles component can't be conducted for sample #10 as the correct container was not received.
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- [2/6/25]: This is an updated SRN which indicates the updated Sample dates and additional email recipients.
- Sample(s) requiring volatile organic compound analysis received in airtight containers (ZHE).
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Unless otherwise stated, analytical work for this work order will be conducted at ALS Sydney, NATA accreditation no. 825, site no. 10911.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

is provided, the laboratory and component Matrix: SOIL <i>Laboratory sample</i> <i>ID</i>	1 0	ill be assumed ckets without <i>Sample ID</i>	by the a time	SOIL - EA055-103 Moisture Content	SOIL - EA200 Asbestos Identification in So	SOIL - EP231X (solids) PFAS - Full Suite (30 analyti	SOIL - S-26 8 metals/TRH/BTEXN/PAH
ES2515873-001	27-May-2025 00:00	BH01_0.05-0.15		✓	1	1	✓
ES2515873-002	27-May-2025 00:00	BH02_0-0.1		✓	✓	✓	✓
ES2515873-003	27-May-2025 00:00	BH02_0.2-0.25		✓	✓	1	✓
ES2515873-004	27-May-2025 00:00	BH02_0.3-0.35		✓	✓	✓	✓
ES2515873-005	27-May-2025 00:00	BH03_0-0.1		✓	✓	1	✓
ES2515873-006	27-May-2025 00:00	BH03_01-0.2		✓	✓	✓	✓
ES2515873-007	27-May-2025 00:00	BH04_0-0.1		✓	✓	1	✓
ES2515873-008	27-May-2025 00:00	BH04_0.1-0.3		✓	✓	✓	✓
ES2515873-009	27-May-2025 00:00	QA100		✓		✓	✓
							1

Identification in Soils

ull Suite (30 analytes)

Matrix: WATER	Sampling date /	Sample ID	WATER - EP231X	교	WATER - W-02T 8 metals (Total)	WATER - W-18 TRH(C6 - C9)/BTEXN	
ID	time		N N	Ĥ	8 M	WA TRI	
ES2515873-010	27-May-2025 00:00	Rinsate	1	✓	✓	✓	

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ANDREW JACOVIDES

 *AU Certificate of Analysis - NATA (COA) 	Email	andrew.jacovides@wsp.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	andrew.jacovides@wsp.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	andrew.jacovides@wsp.com
- A4 - AU Sample Receipt Notification - Environmental HT (SRN)	Email	andrew.jacovides@wsp.com
- A4 - AU Tax Invoice (INV)	Email	andrew.jacovides@wsp.com
- Chain of Custody (CoC) (COC)	Email	andrew.jacovides@wsp.com
- EDI Format - ENMRG (ENMRG)	Email	andrew.jacovides@wsp.com
- EDI Format - ESDAT (ESDAT)	Email	andrew.jacovides@wsp.com
 Purchase Order Request Letter (PO_Request) 	Email	andrew.jacovides@wsp.com
ESDAT REPORTS		
- EDI Format - ESDAT (ESDAT)	Email	wsp@esdat.com.au
INVOICES		
- A4 - AU Tax Invoice (INV)	Email	au.accountspayable@wsp.com
Sally Gartland		
 *AU Certificate of Analysis - NATA (COA) 	Email	Sally.Gartland@wsp.com
 *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) 	Email	Sally.Gartland@wsp.com
 *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) 	Email	Sally.Gartland@wsp.com
 A4 - AU Sample Receipt Notification - Environmental HT (SRN) 	Email	Sally.Gartland@wsp.com
 Chain of Custody (CoC) (COC) 	Email	Sally.Gartland@wsp.com
- EDI Format - ENMRG (ENMRG)	Email	Sally.Gartland@wsp.com
- EDI Format - ESDAT (ESDAT)	Email	Sally.Gartland@wsp.com

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry / Biology). (SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

CERTIFICATE OF ANALYSIS Work Order Page : ES2515873 : 1 of 18 Client : WSP Australia Pty Ltd Laboratory : Environmental Division Sydney Contact : ANDREW JACOVIDES Contact : Andrew Wotherspoon Address Address : 277-289 Woodpark Road Smithfield NSW Australia 2164 : LEVEL 27 680 GEORGE STREET SYDNEY 2000 Telephone : -----Telephone : +61-2-8784 8555 **Date Samples Received** Project : PS224991 : 28-May-2025 16:35 Order number : PS224991 Date Analysis Commenced : 29-May-2025 C-O-C number Issue Date · ____ : 03-Jun-2025 18:45 Sampler : ANDREW JACOVIDES hilulo Accreditation No. 825 Site : -----

Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

: 10

: 10

: WSP MSA 2025

- General Comments
- Analytical Results
- Descriptive Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

Quote number

No. of samples received

No. of samples analysed

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category				
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW				
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW				
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW				
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW				
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW				
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW				
John Williams	Lab Technician	Newcastle - Asbestos, Mayfield West, NSW				
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW				
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW				

right solutions. right partner.

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP231X Per- and Polyfluoroalkyl Substances (PFAS): Samples received in 20mL or 125mL bottles have been tested in accordance with the QSM5.4 compliant, NATA accredited method. 60mL or 250mL bottles have been tested to the legacy QSM 5.1 aligned, NATA accredited method.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP075(SIM): Where reported, Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- EA200 'Am' Amosite (brown asbestos)
- EA200 'Cr' Crocidolite (blue asbestos)
- EA200 'Trace' Asbestos fibres ("Free Fibres") detected by trace analysis per AS4964. The result can be interpreted that the sample contains detectable 'respirable' asbestos fibres
- EA200: Asbestos Identification Samples were analysed by Polarised Light Microscopy including dispersion staining.
- EA200 Legend
- EA200 'Ch' Chrysotile (white asbestos)
- EA200: 'UMF' Unknown Mineral Fibres. "-" indicates fibres detected may or may not be asbestos fibres. Confirmation by alternative techniques is recommended.
- EA200: For samples larger than 30g, the <2mm fraction may be sub-sampled prior to trace analysis as outlined in ISO23909:2008(E) Sect 6.3.2-2
- EA200: 'Yes' Asbestos detected by polarised light microscopy including dispersion staining.
- EA200: 'No*' No asbestos found, at the reporting limit of 0.1g/kg, by polarised light microscopy including dispersion staining. Asbestos material was detected and positively identified at concentrations estimated to be below 0.1g/kg.
- EA200: 'No' No asbestos found at the reporting limit 0.1g/kg, by polarised light microscopy including dispersion staining.
- EP231: Stable isotope enriched internal standards are added to samples prior to extraction. Target compounds have a direct analogous internal standard with the exception of PFPeS, PFHpA, PFDS, PFTrDA and 10:2 FTS. These compounds use an internal standard that is chemically related and has a retention time close to that of the target compound. The DQO for internal standard response is 50-150% of that established at initial calibration or as per USEPA 1633 limits where listed. PFOS is quantified using a certified, traceable standard consisting of linear and branched PFOS isomers. These practices are in line with recommendations in the National Environmental Management Plan for PFAS and also conform to QSM 5.4 (US DoD) requirements.

Page	: 4 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH01_0.05-0.15	BH02_0-0.1	BH02_0.2-0.25	BH02_0.3-0.35	BH03_0-0.1
		Samplii	ng date / time	27-May-2025 00:00				
Compound	CAS Number	LOR	Unit	ES2515873-001	ES2515873-002	ES2515873-003	ES2515873-004	ES2515873-005
				Result	Result	Result	Result	Result
EA055: Moisture Content (Dried @	ᢧ 105-110°C)							
Moisture Content		1.0	%	19.0	19.2	8.1	28.7	25.2
EA200: AS 4964 - 2004 Identificati	ion of Asbestos in Soils	3						
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No	No	No
Asbestos (Trace)	1332-21-4	-	-	No	No	No	No	No
Asbestos Type	1332-21-4	-		-	-	-	-	-
Synthetic Mineral Fibre		-		No	No	No	No	No
Organic Fibre		-		No	No	No	No	No
Sample weight (dry)		0.01	g	98.1	66.4	88.1	81.2	66.2
APPROVED IDENTIFIER:		-		J. WILLIAMS				
EG005(ED093)T: Total Metals by I	CP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	12	11	<5	5
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	<1
Chromium	7440-47-3	2	mg/kg	14	18	18	5	10
Copper	7440-50-8	5	mg/kg	91	26	6	186	33
Lead	7439-92-1	5	mg/kg	220	17	6	15	65
Nickel	7440-02-0	2	mg/kg	6	9	<2	2	5
Zinc	7440-66-6	5	mg/kg	126	60	9	34	123
EG035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	<0.1	<0.1	0.1
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5

Page	5 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH01_0.05-0.15	BH02_0-0.1	BH02_0.2-0.25	BH02_0.3-0.35	BH03_0-0.1
		Sampli	ng date / time	27-May-2025 00:00				
Compound	CAS Number	LOR	Unit	ES2515873-001	ES2515873-002	ES2515873-003	ES2515873-004	ES2515873-005
				Result	Result	Result	Result	Result
EP075(SIM)B: Polynuclear Aromati	c Hydrocarbons - Cont							
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of polycyclic aromatic hydroca	rbons	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.2	1.2	1.2
EP080/071: Total Petroleum Hydrod	carbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	<10
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	<50
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	<100
C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	<10
C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	<10
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	<50
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	<100
>C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	<50

Page	: 6 of 18
Work Order	ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH01_0.05-0.15	BH02_0-0.1	BH02_0.2-0.25	BH02_0.3-0.35	BH03_0-0.1
		Samplir	ng date / time	27-May-2025 00:00				
Compound	CAS Number	LOR	Unit	ES2515873-001	ES2515873-002	ES2515873-003	ES2515873-004	ES2515873-005
				Result	Result	Result	Result	Result
EP080/071: Total Recoverable Hydroca	rbons - NEPM 201	13 Fraction	ns - Continued					
>C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	<50
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	<1
P231A: Perfluoroalkyl Sulfonic Acids								
Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0003	0.0003	<0.0002	<0.0002	0.0004
Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
EP231B: Perfluoroalkyl Carboxylic Ac	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	<0.001	<0.001
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002

Page	: 7 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH01_0.05-0.15	BH02_0-0.1	BH02_0.2-0.25	BH02_0.3-0.35	BH03_0-0.1
		Samplii	ng date / time	27-May-2025 00:00				
Compound	CAS Number	LOR	Unit	ES2515873-001	ES2515873-002	ES2515873-003	ES2515873-004	ES2515873-005
				Result	Result	Result	Result	Result
EP231B: Perfluoroalkyl Carboxylic Ac	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002
EP231D: (n:2) Fluorotelomer Sulfonic	Acids				·		·	·
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005

Page	: 8 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH01_0.05-0.15	BH02_0-0.1	BH02_0.2-0.25	BH02_0.3-0.35	BH03_0-0.1
		Sampli	ng date / time	27-May-2025 00:00				
Compound	CAS Number	LOR	Unit	ES2515873-001	ES2515873-002	ES2515873-003	ES2515873-004	ES2515873-005
				Result	Result	Result	Result	Result
EP231D: (n:2) Fluorotelomer Sulfo	nic Acids - Continued							
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
(8:2 FTS) 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	<0.0005
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0003	0.0003	<0.0002	<0.0002	0.0004
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.0003	0.0003	<0.0002	<0.0002	0.0004
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0003	0.0003	<0.0002	<0.0002	0.0004
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	66.8	69.0	72.7	71.4	68.5
2-Chlorophenol-D4	93951-73-6	0.5	%	87.3	90.6	84.4	89.1	83.7
2.4.6-Tribromophenol	118-79-6	0.5	%	73.7	79.3	59.1	76.3	71.6
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	94.2	95.4	91.8	97.0	88.2
Anthracene-d10	1719-06-8	0.5	%	102	104	109	117	100
4-Terphenyl-d14	1718-51-0	0.5	%	88.5	90.8	88.6	92.4	85.9
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	79.1	86.6	86.8	85.5	90.4
Toluene-D8	2037-26-5	0.2	%	78.7	82.4	86.9	83.6	86.6
4-Bromofluorobenzene	460-00-4	0.2	%	92.1	89.1	93.0	87.6	92.1
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	105	116	119	116	115
13C8-PFOA		0.0002	%	102	108	104	95.6	105

Page	: 9 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH03_01-0.2	BH04_0-0.1	BH04_0.1-0.3	QA100	
· · · · · · · · · · · · · · · · · · ·		Samplii	ng date / time	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	
Compound	CAS Number	LOR	Unit	ES2515873-006	ES2515873-007	ES2515873-008	ES2515873-009	
				Result	Result	Result	Result	
EA055: Moisture Content (Dried @	0 105-110°C)							
Moisture Content		1.0	%	18.4	34.6	16.5	20.1	
EA200: AS 4964 - 2004 Identificati	on of Asbestos in Soils							
Asbestos Detected	1332-21-4	0.1	g/kg	No	No	No		
Asbestos (Trace)	1332-21-4	-	-	No	No	No		
Asbestos Type	1332-21-4	-		-	-	-		
Synthetic Mineral Fibre		-		No	No	No		
Organic Fibre		-		No	No	No		
Sample weight (dry)		0.01	g	94.6	69.4	143		
APPROVED IDENTIFIER:		-		J. WILLIAMS	J. WILLIAMS	J. WILLIAMS		
EG005(ED093)T: Total Metals by I	CP-AES							
Arsenic	7440-38-2	5	mg/kg	<5	<5	<5	<5	
Cadmium	7440-43-9	1	mg/kg	<1	<1	<1	<1	
Chromium	7440-47-3	2	mg/kg	6	6	5	5	
Copper	7440-50-8	5	mg/kg	57	40	129	146	
Lead	7439-92-1	5	mg/kg	30	42	96	82	
Nickel	7440-02-0	2	mg/kg	2	4	4	4	
Zinc	7440-66-6	5	mg/kg	156	152	254	218	
EG035T: Total Recoverable Merc	ury by FIMS							
Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.2	0.2	
EP075(SIM)B: Polynuclear Aroma	tic Hydrocarbons							
Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.6	<0.5	
Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	1.8	1.3	

Page	: 10 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH03_01-0.2	BH04_0-0.1	BH04_0.1-0.3	QA100	
		Sampli	ng date / time	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	
Compound	CAS Number	LOR	Unit	ES2515873-006	ES2515873-007	ES2515873-008	ES2515873-009	
				Result	Result	Result	Result	
EP075(SIM)B: Polynuclear Aromati	ic Hydrocarbons - Con	tinued						
Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	1.8	1.4	
Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.7	0.6	
Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.8	0.6	
Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	<0.5	1.0	0.8	
Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	1.0	0.8	
Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.5	<0.5	
Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.7	0.6	
^ Sum of polycyclic aromatic hydroca	rbons	0.5	mg/kg	<0.5	<0.5	8.9	6.1	
^ Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	1.2	1.0	
^ Benzo(a)pyrene TEQ (half LOR)		0.5	mg/kg	0.6	0.6	1.5	1.2	
^ Benzo(a)pyrene TEQ (LOR)		0.5	mg/kg	1.2	1.2	1.8	1.6	
EP080/071: Total Petroleum Hydro	carbons							
C6 - C9 Fraction		10	mg/kg	<10	<10	<10	<10	
C10 - C14 Fraction		50	mg/kg	<50	<50	<50	<50	
C15 - C28 Fraction		100	mg/kg	<100	<100	<100	<100	
C29 - C36 Fraction		100	mg/kg	<100	<100	<100	<100	
^ C10 - C36 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	
EP080/071: Total Recoverable Hyd	rocarbons - NEPM 201	3 Fractio	ns					
C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	<10	<10	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	10	mg/kg	<10	<10	<10	<10	
>C10 - C16 Fraction		50	mg/kg	<50	<50	<50	<50	
>C16 - C34 Fraction		100	mg/kg	<100	<100	<100	<100	
>C34 - C40 Fraction		100	mg/kg	<100	<100	<100	<100	
^ >C10 - C40 Fraction (sum)		50	mg/kg	<50	<50	<50	<50	

Page	: 11 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH03_01-0.2	BH04_0-0.1	BH04_0.1-0.3	QA100	
	Sampling date / time					27-May-2025 00:00	27-May-2025 00:00	
Compound	CAS Number	LOR	Unit	ES2515873-006	ES2515873-007	ES2515873-008	ES2515873-009	
			1	Result	Result	Result	Result	
EP080/071: Total Recoverable Hydroca	arbons - NEPM 201	3 Fraction	ns - Continued					
^ >C10 - C16 Fraction minus Naphthalene		50	mg/kg	<50	<50	<50	<50	
(F2)								
EP080: BTEXN								
Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
[^] Sum of BTEX		0.2	mg/kg	<0.2	<0.2	<0.2	<0.2	
^ Total Xylenes		0.5	mg/kg	<0.5	<0.5	<0.5	<0.5	
Naphthalene	91-20-3	1	mg/kg	<1	<1	<1	<1	
EP231A: Perfluoroalkyl Sulfonic Acids	;							
Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0002	0.0006	0.0003	0.0002	
Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
EP231B: Perfluoroalkyl Carboxylic Ac	ids							
Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	<0.001	<0.001	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.0002	<0.0002	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Page	: 12 of 18							
------------	-------------------------							
Work Order	: ES2515873							
Client	: WSP Australia Pty Ltd							
Project	: PS224991							

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH03_01-0.2	BH04_0-0.1	BH04_0.1-0.3	QA100	
		Samplii	ng date / time	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	
Compound	CAS Number	LOR	Unit	ES2515873-006	ES2515873-007	ES2515873-008	ES2515873-009	
				Result	Result	Result	Result	
EP231B: Perfluoroalkyl Carboxylic Ac	cids - Continued							
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
EP231C: Perfluoroalkyl Sulfonamides								
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	<0.0002	<0.0002	
EP231D: (n:2) Fluorotelomer Sulfonic	Acids					·	·	
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	

Page	: 13 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	BH03_01-0.2	BH04_0-0.1	BH04_0.1-0.3	QA100	
		Sampli	ng date / time	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	27-May-2025 00:00	
Compound	CAS Number	LOR	Unit	ES2515873-006	ES2515873-007	ES2515873-008	ES2515873-009	
				Result	Result	Result	Result	
EP231D: (n:2) Fluorotelomer Sulfo	nic Acids - Continued							
8:2 Fluorotelomer sulfonic acid	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
(8:2 FTS)		0.0005		0.0005	0.0005	0.0005	0.0005	
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	<0.0005	<0.0005	
EP231P: PFAS Sums								
Sum of PFAS		0.0002	mg/kg	0.0002	0.0006	0.0005	0.0002	
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.0002	mg/kg	0.0002	0.0006	0.0003	0.0002	
Sum of PFAS (WA DER List)		0.0002	mg/kg	0.0002	0.0006	0.0005	0.0002	
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%	67.1	75.6	76.2	72.4	
2-Chlorophenol-D4	93951-73-6	0.5	%	87.0	88.6	90.2	85.5	
2.4.6-Tribromophenol	118-79-6	0.5	%	68.6	80.1	76.3	71.8	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%	95.8	93.4	94.8	89.9	
Anthracene-d10	1719-06-8	0.5	%	110	99.9	101	97.9	
4-Terphenyl-d14	1718-51-0	0.5	%	92.3	88.5	90.7	87.2	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%	85.0	82.7	82.9	82.4	
Toluene-D8	2037-26-5	0.2	%	84.9	83.0	83.5	83.9	
4-Bromofluorobenzene	460-00-4	0.2	%	94.0	93.9	94.0	95.3	
EP231S: PFAS Surrogate								
13C4-PFOS		0.0002	%	113	117	114	109	
13C8-PFOA		0.0002	%	111	99.9	106	99.5	

Page	: 14 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Rinsate	 	
		Sampli	ng date / time	27-May-2025 00:00	 	
Compound	CAS Number	LOR	Unit	ES2515873-010	 	
				Result	 	
EG020T: Total Metals by ICP-MS						
Arsenic	7440-38-2	0.001	mg/L	<0.001	 	
Cadmium	7440-43-9	0.0001	mg/L	<0.0001	 	
Chromium	7440-47-3	0.001	mg/L	<0.001	 	
Copper	7440-50-8	0.001	mg/L	<0.001	 	
Nickel	7440-02-0	0.001	mg/L	<0.001	 	
Lead	7439-92-1	0.001	mg/L	<0.001	 	
Zinc	7440-66-6	0.005	mg/L	<0.005	 	
EG035T: Total Recoverable Mercur	ry by FIMS					
Mercury	7439-97-6	0.0001	mg/L	<0.0001	 	
EP080/071: Total Petroleum Hydroc	carbons					
C6 - C9 Fraction		20	µg/L	<20	 	
EP080/071: Total Recoverable Hydr	ocarbons - NEPM 201	3 Fractio	ns			
C6 - C10 Fraction	C6_C10	20	µg/L	<20	 	
[^] C6 - C10 Fraction minus BTEX (F1)	C6_C10-BTEX	20	µg/L	<20	 	
EP080: BTEXN						
Benzene	71-43-2	1	µg/L	<1	 	
Toluene	108-88-3	2	µg/L	<2	 	
Ethylbenzene	100-41-4	2	µg/L	<2	 	
meta- & para-Xylene	108-38-3 106-42-3	2	µg/L	<2	 	
ortho-Xylene	95-47-6	2	µg/L	<2	 	
^ Total Xylenes		2	µg/L	<2	 	
^ Sum of BTEX		1	µg/L	<1	 	
Naphthalene	91-20-3	5	µg/L	<5	 	
EP231A: Perfluoroalkyl Sulfonic Ac	ids					
Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.02	µg/L	<0.02	 	
Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	 	

Page	: 15 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Rinsate	 	
(Sampli	ng date / time	27-May-2025 00:00	 	
Compound	CAS Number	LOR	Unit	ES2515873-010	 	
				Result	 	
EP231A: Perfluoroalkyl Sulfonic Acids	- Continued					
Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	 	
Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	 	
Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02	 	
Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	 	
Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.02	µg/L	<0.02	 	
Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	 	
EP231B: Perfluoroalkyl Carboxylic Ac	cids					
Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	 	
Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	 	
Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	 	
Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	μg/L	<0.02	 	
Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	 	
Perfluorononanoic acid (PFNA)	375-95-1	0.02	µg/L	<0.02	 	
Perfluorodecanoic acid (PFDA)	335-76-2	0.02	µg/L	<0.02	 	
Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	µg/L	<0.02	 	
Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02	 	
Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02	 	
Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05	 	
Perfluorohexadecanoic acid (PFHxDA)	67905-19-5	0.05	µg/L	<0.05	 	
EP231C: Perfluoroalkyl Sulfonamides						
Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02	 	

Page	: 16 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER			Sample ID	Rinsate	 		
(Matrix: WATER)		Sampli	ng date / time	27-May-2025 00:00	 		
Compound	CAS Number	LOR	Unit	ES2515873-010	 		
				Result	 		
EP231C: Perfluoroalkyl Sulfonamide	s - Continued						
N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05	 		
N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05	 		
N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L	<0.05	 		
N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L	<0.05	 		
N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	µg/L	<0.02	 		
N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L	<0.02	 		
EP231D: (n:2) Fluorotelomer Sulfoni	ic Acids						
4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	 		
6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	 		
8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	 		
10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	 		
EP231P: PFAS Sums							
Sum of PFAS		0.01	µg/L	<0.01	 		
Sum of PFHxS and PFOS	355-46-4/1763-23- 1	0.01	µg/L	<0.01	 		
Sum of PFAS (WA DER List)		0.01	µg/L	<0.01	 		
EP080S: TPH(V)/BTEX Surrogates						·	·
1.2-Dichloroethane-D4	17060-07-0	2	%	125	 		
Toluene-D8	2037-26-5	2	%	107	 		
4-Bromofluorobenzene	460-00-4	2	%	115	 		
EP231S: PFAS Surrogate							

Page	: 17 of 18
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Sub-Matrix: WATER (Matrix: WATER)			Sample ID	Rinsate	 	
		Samplii	ng date / time	27-May-2025 00:00	 	
Compound	CAS Number	LOR	Unit	ES2515873-010	 	
				Result	 	
EP231S: PFAS Surrogate - Continued						
13C4-PFOS		0.02	%	88.8	 	
13C8-PFOA		0.02	%	104	 	

Analytical Results

Descriptive Results

Sub-Matrix: SOIL

Method: Compound	Sample ID - Sampling date / time	Analytical Results
EA200: AS 4964 - 2004 Identificatio	n of Asbestos in Soils	
EA200: Description	BH01_0.05-0.15 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH02_0-0.1 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH02_0.2-0.25 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH02_0.3-0.35 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH03_0-0.1 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH03_01-0.2 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH04_0-0.1 - 27-May-2025 00:00	A soil sample.
EA200: Description	BH04_0.1-0.3 - 27-May-2025 00:00	A soil sample.

Surrogate Control Limits

Sub-Matrix: SOIL	Recovery Limits (%)			
Compound	CAS Number	Low	High	
EP075(SIM)S: Phenolic Compound Surrog	ates			
Phenol-d6	13127-88-3	63	123	
2-Chlorophenol-D4	93951-73-6	66	122	
2.4.6-Tribromophenol	118-79-6	40	138	
EP075(SIM)T: PAH Surrogates				
2-Fluorobiphenyl	321-60-8	70	122	
Anthracene-d10	1719-06-8	66	128	
4-Terphenyl-d14	1718-51-0	65	129	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	63	125	
Toluene-D8	2037-26-5	67	124	
4-Bromofluorobenzene	460-00-4	66	131	
EP231S: PFAS Surrogate				
13C4-PFOS		60	120	
13C8-PFOA		60	120	
Sub-Matrix: WATER	Г	Recovery	Limits (%)	
Compound	CAS Number	Low	High	
EP080S: TPH(V)/BTEX Surrogates				
1.2-Dichloroethane-D4	17060-07-0	72	143	
Toluene-D8	2037-26-5	75	131	
4-Bromofluorobenzene	460-00-4	73	137	
EP231S: PFAS Surrogate				
13C4-PFOS		60	120	
13C8-PFOA		60	120	

Inter-Laboratory Testing

Analysis conducted by ALS Newcastle, NATA accreditation no. 825, site no. 1656 (Chemistry / Biology).

(SOIL) EA200: AS 4964 - 2004 Identification of Asbestos in Soils

QUALITY CONTROL REPORT

Work Order	: ES2515873	Page	: 1 of 15	
Client	: WSP Australia Pty Ltd	Laboratory	: Environmental Division S	Sydney
Contact	: ANDREW JACOVIDES	Contact	: Andrew Wotherspoon	
Address	: LEVEL 27 680 GEORGE STREET SYDNEY 2000	Address	•	
Telephone	:	Telephone	: +61-2-8784 8555	
Project	: PS224991	Date Samples Received	: 28-May-2025	
Order number	: PS224991	Date Analysis Commenced	: 29-May-2025	
C-O-C number	:	Issue Date	: 03-Jun-2025	NATA
Sampler	: ANDREW JACOVIDES			ilac-MRA NATA
Site	:			
Quote number	: WSP MSA 2025			Accreditation No. 825
No. of samples received	: 10			Accredited for compliance with
No. of samples analysed	: 10			ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	natories Position Accreditation Category				
Alex Rossi	Organic Chemist	Sydney Organics, Smithfield, NSW			
Edwandy Fadjar	Organic Coordinator	Sydney Inorganics, Smithfield, NSW			
Edwandy Fadjar	Organic Coordinator	Sydney Organics, Smithfield, NSW			
Franco Lentini	LCMS Coordinator	Sydney Inorganics, Smithfield, NSW			
Franco Lentini	LCMS Coordinator	Sydney Organics, Smithfield, NSW			
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW			
John Williams	Lab Technician	Newcastle - Asbestos, Mayfield West, NSW			
Sanjeshni Jyoti	Senior Chemist Volatiles	Sydney Organics, Smithfield, NSW			
Wisam Marassa	Inorganics Coordinator	Sydney Inorganics, Smithfield, NSW			

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

* = The final LOR has been raised due to dilution or other sample specific cause; adjusted LOR is shown in brackets. The duplicate ranges for Acceptable RPD% are applied to the final LOR where applicable.

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	tal Metals by ICP-AES	(QC Lot: 6614490)							
ES2515873-001	BH01_0.05-0.15	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	14	8	44.7	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	6	5	20.1	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	91	67	30.9	0% - 50%
		EG005T: Lead	7439-92-1	5	mg/kg	220	217	1.5	0% - 20%
		EG005T: Zinc	7440-66-6	5	mg/kg	126	106	17.5	0% - 20%
ES2516018-002	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	16	21	24.6	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	10	9	11.1	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	9	9	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	16	14	8.7	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	58	52	10.8	0% - 50%
A055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 6613220)							
EP2508355-001	Anonymous	EA055: Moisture Content		0.1 (1.0)*	%	10.6	11.4	7.2	0% - 50%
A055: Moisture Co	ntent (Dried @ 105-110	°C) (QC Lot: 6614492)							
ES2515873-002	BH02_0-0.1	EA055: Moisture Content		0.1 (1.0)*	%	19.2	18.9	1.6	0% - 50%
ES2516018-001	Anonymous	EA055: Moisture Content		0.1 (1.0)*	%	6.8	6.7	1.8	No Limit

Page	: 3 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL			Laboratory Duplicate (DUP) Report						
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035T: Total Rec	overable Mercury by FIM	MS (QC Lot: 6614491) - continued				·	·		
ES2515873-001	BH01_0.05-0.15	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2516018-002	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP075(SIM)B: Polyr	nuclear Aromatic Hydrod	carbons (QC Lot: 6612533)							
ES2515873-001	BH01_0.05-0.15	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Sum of polycyclic aromatic		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		hydrocarbons		0.5		-0.5	-0.5	0.0	Nie Literit
		EP075(SIM): Benzo(a)pyrene TEQ (zero)		0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	etroleum Hydrocarbons								
ES2515873-001	BH01_0.05-0.15	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
ES2515904-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarbons	(QC Lot: 6612534)							
ES2515873-001	BH01_0.05-0.15	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbon	ns - NEPM 2013 Fractions (QC Lot: 6612425)							
ES2515873-001	BH01_0.05-0.15	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
ES2515904-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Re	ecoverable Hydrocarbon	ns - NEPM 2013 Fractions (QC Lot: 6612534)							
ES2515873-001	BH01_0.05-0.15	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
	1				1	1			1

Page	: 4 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL			[Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080: BTEXN (QC	Lot: 6612425)								
ES2515873-001	BH01_0.05-0.15	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
ES2515904-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EP231A: Perfluoroa	Ikyl Sulfonic Acids (QC	C Lot: 6612688)							
ES2515537-001	Anonymous	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0006	0.0006	0.0	No Limit
		EP231X: Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
ES2515873-008	BH04_0.1-0.3	EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	0.0003	0.0003	0.0	No Limit
		EP231X: Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
EP231B: Perfluoroa	alkyl Carboxylic Acids	(QC Lot: 6612688)							
ES2515537-001	Anonymous	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit

Page	5 of 15
Work Order	ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report	t	
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231B: Perfluoroa	Ikyl Carboxylic Acids	(QC Lot: 6612688) - continued							
ES2515537-001	Anonymous	EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.0	No Limit
ES2515873-008	BH04_0.1-0.3	EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	0.0002	0.0003	0.0	No Limit
		EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	<0.001	0.0	No Limit
EP231C: Perfluoroal	kyl Sulfonamides (Q	C Lot: 6612688)				·			
ES2515537-001	Anonymous	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		sulfonamidoacetic acid (EtFOSAA)							
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		(MeFOSA)	4454 50 0	0.0005		-0.0005	10,0005	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	<0.0005	0.0	NO LIMIT
		EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		sulfonamidoethanol (MeFOSE)	21110 00 1	0.0000	inging	10.0000	0.0000	0.0	
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	< 0.0005	<0.0005	0.0	No Limit
		sulfonamidoethanol (EtFOSE)							
ES2515873-008	BH04_0.1-0.3	EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		EP231X: N-Methyl perfluorooctane	2355-31-9	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		sulfonamidoacetic acid (MeFOSAA)							
		EP231X: N-Ethyl perfluorooctane	2991-50-6	0.0002	mg/kg	<0.0002	<0.0002	0.0	No Limit
		sulfonamidoacetic acid (EtFOSAA)	0.1500.00.0	0.0005		0.0005	0.0005		
		EP231X: N-Methyl perfluorooctane sulfonamide	31506-32-8	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		(MeFOSA)	4151-50-2	0.0005	ma/ka	<0.0005	<0.0005	0.0	No Limit
		EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4101-00-2	0.0005	mg/kg	~0.0005	<0.0005	0.0	
I		(EIFUSA)							

Page	: 6 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP231C: Perfluoroal	lkyl Sulfonamides (QC	Lot: 6612688) - continued							
ES2515873-008	BH04_0.1-0.3	EP231X: N-Methyl perfluorooctane	24448-09-7	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		sulfonamidoethanol (MeFOSE)							
		EP231X: N-Ethyl perfluorooctane	1691-99-2	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		sulfonamidoethanol (EtFOSE)							
EP231D: (n:2) Fluor	rotelomer Sulfonic Aci	ds (QC Lot: 6612688)							
ES2515537-001 Anonymous E		EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		FTS)							
	515873-008 BH04_0.1-0.3 Matrix: WATER ratory sample ID Sample ID 20T: Total Metals by ICP-MS (QC Lot: 66160)	EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		FTS)	00400.04.4	0.0005		0.0005	0.0005		
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		FTS)	120226-60-0	0.0005	malka	<0.0005	<0.0005	0.0	No Limit
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120220-00-0	0.0005	mg/kg	<0.0005	<0.0005	0.0	NO LITIIL
ES2515873-008	BH04 0.1-0.3	EP231X: 4:2 Fluorotelomer sulfonic acid (4:2	757124-72-4	0.0005	mg/kg	< 0.0005	< 0.0005	0.0	No Limit
		FTS)							
		EP231X: 6:2 Fluorotelomer sulfonic acid (6:2	27619-97-2	0.0005	mg/kg	<0.0005	< 0.0005	0.0	No Limit
		FTS)							
		EP231X: 8:2 Fluorotelomer sulfonic acid (8:2	39108-34-4	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		FTS)							
		EP231X: 10:2 Fluorotelomer sulfonic acid (10:2	120226-60-0	0.0005	mg/kg	<0.0005	<0.0005	0.0	No Limit
		FTS)							
Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020T: Total Metal	Is by ICP-MS (QC Lot:	6616032)							
ES2515535-006	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.005	0.005	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.002	0.002	0.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	0.016	0.017	0.0	0% - 50%
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.007	0.008	14.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.052	0.049	4.6	No Limit
ES2515839-008	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	0.007	0.007	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.004	0.004	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.004	0.003	39.0	No Limit
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.006	0.006	0.0	No Limit
	1 I I I I I I I I I I I I I I I I I I I		7440-66-6	0.005	mg/L	0.036	0.031	12.5	No Limit

Page	: 7 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG035T: Total Reco	overable Mercury by FIMS	(QC Lot: 6614701) - continued							
ES2515554-001	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
ES2515571-004	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.1 µg/L	<0.0001	0.0	No Limit
EP080/071: Total Pe	troleum Hydrocarbons (C	QC Lot: 6612784)							
ES2515913-002	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
ES2515913-008	Anonymous	EP080: C6 - C9 Fraction		20	µg/L	<20	<20	0.0	No Limit
EP080/071: Total Re	coverable Hydrocarbons	- NEPM 2013 Fractions (QC Lot: 6612784)							
ES2515913-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
ES2515913-008	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	Lot: 6612784)								
ES2515913-002	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit
ES2515913-008	Anonymous	EP080: Benzene	71-43-2	1	µg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	µg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	µg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	µg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	µg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	µg/L	<5	<5	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptabl	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 6	614490)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	101	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	98.6	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	109	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	105	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	97.7	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	95.8	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	94.7	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QCLo	ot: 6614491)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	84.8	70.0	125
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCLot: 6612533)							
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	6 mg/kg	98.7	77.0	125
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	6 mg/kg	114	72.0	124
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	6 mg/kg	102	73.0	127
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	6 mg/kg	108	72.0	126
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	6 mg/kg	107	75.0	127
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	6 mg/kg	110	77.0	127
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	6 mg/kg	121	73.0	127
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	6 mg/kg	119	74.0	128
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	6 mg/kg	104	69.0	123
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	6 mg/kg	113	75.0	127
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2 205-82-3	0.5	mg/kg	<0.5	6 mg/kg	107	68.0	116
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	6 mg/kg	113	74.0	126
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	6 mg/kg	113	70.0	126
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	6 mg/kg	114	61.0	121
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	6 mg/kg	106	62.0	118
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	6 mg/kg	116	63.0	121
EP080/071: Total Petroleum Hydrocarbons (QCLot: (6612425)				·	· · · · · · · · · · · · · · · · · · ·		
EP080: C6 - C9 Fraction		10	mg/kg	<10	26 mg/kg	94.3	72.2	131
EP080/071: Total Petroleum Hydrocarbons (QCLot: (6612534)							1
EP071: C10 - C14 Fraction		50	mg/kg	<50	300 mg/kg	98.4	75.0	129

Page	: 9 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (QCLot: 6	6612534) - continued							
EP071: C15 - C28 Fraction		100	mg/kg	<100	450 mg/kg	98.3	77.0	131
EP071: C29 - C36 Fraction		100	mg/kg	<100	300 mg/kg	94.9	71.0	129
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCI	_ot: 6612425)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	31 mg/kg	88.4	72.4	133
EP080/071: Total Recoverable Hydrocarbons - NEPM	2013 Fractions (QCI	_ot: 6612534)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	375 mg/kg	101	77.0	125
EP071: >C16 - C34 Fraction		100	mg/kg	<100	525 mg/kg	95.8	74.0	138
EP071: >C34 - C40 Fraction		100	mg/kg	<100	225 mg/kg	92.4	63.0	131
EP080: BTEXN (QCLot: 6612425)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	1 mg/kg	88.0	76.0	124
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	1 mg/kg	89.6	78.5	121
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	1 mg/kg	93.6	77.4	121
EP080: meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg	<0.5	2 mg/kg	100	78.2	121
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	1 mg/kg	95.4	81.3	121
EP080: Naphthalene	91-20-3	1	mg/kg	<1	1 mg/kg	89.0	78.8	122
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 66120	688)							
EP231X: Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.0005	mg/kg	<0.0005	0.00125 mg/kg	107	70.0	130
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.0002	mg/kg	<0.0002	0.00125 mg/kg	85.3	72.0	128
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	116	73.0	123
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	92.4	67.0	130
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	109	70.0	132
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	102	68.0	136
EP231X: Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	102	70.0	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	97.8	59.0	134
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 66	512688)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.001	mg/kg	<0.001	0.00625 mg/kg	120	71.0	135
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.0002	mg/kg	<0.0002	0.00125 mg/kg	118	69.0	132
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.0002	mg/kg	<0.0002	0.00125 mg/kg	102	70.0	132
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	124	71.0	131
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	115	69.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	96.5	72.0	129
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.0002	mg/kg	<0.0002	0.00125 mg/kg	111	69.0	133
	2058-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	1	64.0	<u> </u>

Page	: 10 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

EP080: C6 - C9 Fraction

75.0

127

76.9

Sub-Matrix: SOIL				Method Blank (MB)	Laboratory Control Spike (LCS) Report			
			_	Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 6612	2688) - continued							
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.0002	mg/kg	<0.0002	0.00125 mg/kg	125	69.0	135
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.0002	mg/kg	<0.0002	0.00125 mg/kg	118	66.0	139
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	117	69.0	133
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 6612688))							
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	116	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	71.6	129
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	109	69.8	131
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.0005	mg/kg	<0.0005	0.00312 mg/kg	122	68.7	130
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.0005	mg/kg	<0.0005	0.00312 mg/kg	118	65.1	134
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.0002	mg/kg	<0.0002	0.00125 mg/kg	116	63.0	144
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.0002	mg/kg	<0.0002	0.00125 mg/kg	76.1	61.0	139
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 66	612688)							
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	93.9	62.0	145
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.0005	mg/kg	<0.0005	0.00125 mg/kg	87.7	64.0	140
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.0005	mg/kg	<0.0005	0.00125 mg/kg	102	65.0	137
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.0005	mg/kg	<0.0005	0.00125 mg/kg	114	69.2	143
ub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG020T: Total Metals by ICP-MS (QCLot: 6616032)								
EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	0.1 mg/L	101	82.0	114
EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	0.1 mg/L	102	84.0	112
EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	0.1 mg/L	104	86.0	116
EG020A-T: Copper	7440-50-8	0.001	mg/L	<0.001	0.1 mg/L	97.8	83.0	118
EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	0.1 mg/L	97.3	85.0	115
EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	0.1 mg/L	95.7	84.0	116
EG020A-T: Zinc	7440-66-6	0.005	mg/L	<0.005	0.1 mg/L	96.0	79.0	117
EG035T: Total Recoverable Mercury by FIMS (QCLot: 6	614701)			·	·	·		
EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	0.01 mg/L	100	77.0	111
EP080/071: Total Petroleum Hydrocarbons (QCLot: 661	2784)					· · · · · · · · · · · · · · · · · · ·		

µg/L

<20

260 µg/L

20

Page	: 11 of 15
Work Order	ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LCS) Report		
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Recoverable Hydrocarbons - NEPM			1					
EP080: C6 - C10 Fraction	C6_C10	20	µg/L	<20	310 µg/L	77.4	75.0	127
EP080: BTEXN (QCLot: 6612784)								
EP080: Benzene	71-43-2	1	µg/L	<1	10 µg/L	90.9	68.3	119
EP080: Toluene	108-88-3	2	µg/L	<2	10 µg/L	90.9	73.5	120
EP080: Ethylbenzene	100-41-4	2	µg/L	<2	10 µg/L	91.8	73.8	122
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	10 µg/L	99.3	73.0	122
EP080: ortho-Xylene	95-47-6	2	µg/L	<2	10 µg/L	100	76.4	123
EP080: Naphthalene	91-20-3	5	μg/L	<5	10 µg/L	99.2	75.5	124
EP231A: Perfluoroalkyl Sulfonic Acids (QCLot: 6612	993)							
EP231X: Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.02	µg/L	<0.02	0.25 µg/L	117	70.0	130
EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.02	µg/L	<0.02	0.25 µg/L	100	72.0	130
EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.02	µg/L	<0.02	0.25 µg/L	113	71.0	127
EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.01	µg/L	<0.01	0.25 µg/L	117	68.0	131
EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.02	µg/L	<0.02	0.25 μg/L	122	69.0	134
EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.01	µg/L	<0.01	0.25 µg/L	98.8	65.0	140
EP231X: Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.02	µg/L	<0.02	0.25 µg/L	95.6	70.0	130
EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.02	µg/L	<0.02	0.25 µg/L	86.8	53.0	142
EP231B: Perfluoroalkyl Carboxylic Acids (QCLot: 66	512993)							
EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.1	µg/L	<0.1	1.25 μg/L	112	73.0	129
EP231X: Perfluoropentanoic acid (PFPeA)	2706-90-3	0.02	µg/L	<0.02	0.25 μg/L	127	72.0	129
EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.02	µg/L	<0.02	0.25 μg/L	100	72.0	129
EP231X: Perfluoroheptanoic acid (PFHpA)	375-85-9	0.02	µg/L	<0.02	0.25 µg/L	82.9	72.0	130
EP231X: Perfluorooctanoic acid (PFOA)	335-67-1	0.01	μg/L	<0.01	0.25 µg/L	106	71.0	133
EP231X: Perfluorononanoic acid (PFNA)	375-95-1	0.02	μg/L	<0.02	0.25 µg/L	104	69.0	130
EP231X: Perfluorodecanoic acid (PFDA)	335-76-2	0.02	μg/L	<0.02	0.25 µg/L	110	71.0	129
EP231X: Perfluoroundecanoic acid (PFUnDA)	2058-94-8	0.02	μg/L	<0.02	0.25 µg/L	105	69.0	133
EP231X: Perfluorododecanoic acid (PFDoDA)	307-55-1	0.02	µg/L	<0.02	0.25 µg/L	131	72.0	134
EP231X: Perfluorotridecanoic acid (PFTrDA)	72629-94-8	0.02	µg/L	<0.02	0.25 µg/L	113	65.0	144
EP231X: Perfluorotetradecanoic acid (PFTeDA)	376-06-7	0.05	µg/L	<0.05	0.625 µg/L	126	71.0	132
EP231X: Perfluorohexadecanoic acid (PFHxDA)	67905-19-5	0.05	µg/L	<0.05	0.25 µg/L	118	62.9	136
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 66129	93)				·	· 		
EP231X: Perfluorooctane sulfonamide (FOSA)	754-91-6	0.02	µg/L	<0.02	0.25 µg/L	80.5	67.0	137
EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA)	31506-32-8	0.05	µg/L	<0.05	0.625 µg/L	122	68.0	141

Page	: 12 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER				Method Blank (MB)	Laboratory Control Spike (LCS) Report				
				Report	Spike	Spike Recovery (%)	Acceptable Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High	
EP231C: Perfluoroalkyl Sulfonamides (QCLot: 661299	3) - continued								
EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA)	4151-50-2	0.05	µg/L	<0.05	0.625 µg/L	106	62.6	147	
EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE)	24448-09-7	0.05	µg/L	<0.05	0.625 µg/L	108	66.0	145	
EP231X: N-Ethyl perfluorooctane sulfonamidoethanol (EtFOSE)	1691-99-2	0.05	µg/L	<0.05	0.625 µg/L	118	57.6	145	
EP231X: N-Methyl perfluorooctane sulfonamidoacetic acid (MeFOSAA)	2355-31-9	0.02	µg/L	<0.02	0.25 μg/L	108	65.0	136	
EP231X: N-Ethyl perfluorooctane sulfonamidoacetic acid (EtFOSAA)	2991-50-6	0.02	µg/L	<0.02	0.25 μg/L	91.5	61.0	135	
EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 6	612993)								
EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS)	757124-72-4	0.05	µg/L	<0.05	0.25 μg/L	105	63.0	143	
EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS)	27619-97-2	0.05	µg/L	<0.05	0.25 μg/L	100	64.0	140	
EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS)	39108-34-4	0.05	µg/L	<0.05	0.25 μg/L	126	67.0	138	
EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS)	120226-60-0	0.05	µg/L	<0.05	0.25 μg/L	84.3	71.4	144	

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL			Matrix Spike (MS) Report				
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 6614490)						
ES2515873-001	BH01_0.05-0.15	EG005T: Arsenic	7440-38-2	50 mg/kg	88.6	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	96.6	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	91.7	68.0	132
		EG005T: Copper	EG005T: Copper 7440-50-8				130
		EG005T: Lead	EG005T: Lead 7439-92-1		84.0	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	97.3	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	91.3	66.0	133
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 6614491)						
ES2515873-001	BH01_0.05-0.15	EG035T: Mercury	7439-97-6	5 mg/kg	93.2	70.0	130
EP075(SIM)B: Poly	ynuclear Aromatic Hydrocarbons (QCLot: 6612533)					
ES2515873-001	BH01_0.05-0.15	EP075(SIM): Acenaphthene	83-32-9	10 mg/kg	95.0	70.0	130
		EP075(SIM): Pyrene	129-00-0	10 mg/kg	116	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 6612425)						
ES2515873-001	BH01_0.05-0.15	EP080: C6 - C9 Fraction		32.5 mg/kg	102	60.4	142

Page	: 13 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

ub-Matrix: SOIL				Ма	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
boratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
P080/071: Total	Petroleum Hydrocarbons (QCLot: 6612534)						
S2515873-001	BH01_0.05-0.15	EP071: C10 - C14 Fraction		480 mg/kg	118	73.0	137
	_	EP071: C15 - C28 Fraction		3100 mg/kg	102	53.0	131
		EP071: C29 - C36 Fraction		2060 mg/kg	109	52.0	132
P080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fra	ctions (QCLot: 6612425)					1
S2515873-001	BH01 0.05-0.15	EP080: C6 - C10 Fraction	C6 C10	37.5 mg/kg	96.6	61.1	142
2080/071: Total	Recoverable Hydrocarbons - NEPM 2013 Fra			3 3 3		-	
S2515873-001	BH01 0.05-0.15			960 mg/kg	104	73.0	137
L32313073-001	впо1_0.05-0.15	EP071: >C10 - C16 Fraction		860 mg/kg 4320 mg/kg	104	53.0	137
		EP071: >C16 - C34 Fraction		890 mg/kg	113	52.0	131
		EP071: >C34 - C40 Fraction		090 mg/kg	113	52.0	152
	QCLot: 6612425)						
S2515873-001	BH01_0.05-0.15	EP080: Benzene	71-43-2	2.5 mg/kg	86.6	62.1	122
		EP080: Toluene	108-88-3	2.5 mg/kg	86.3	66.6	119
		EP080: Ethylbenzene	100-41-4	2.5 mg/kg	91.3	67.4	123
		EP080: meta- & para-Xylene	108-38-3	2.5 mg/kg	95.9	66.4	121
			106-42-3				
		EP080: ortho-Xylene	95-47-6	2.5 mg/kg	91.6	70.7	121
		EP080: Naphthalene	91-20-3	2.5 mg/kg	97.0	61.1	115
P231A: Perfluor	oalkyl Sulfonic Acids (QCLot: 6612688)						
S2515537-001	Anonymous	EP231X: Perfluoropropane sulfonic acid (PFPrS)	423-41-6	0.00125 mg/kg	104	70.0	130
		EP231X: Perfluorobutane sulfonic acid (PFBS)	375-73-5	0.00125 mg/kg	83.5	72.0	128
		EP231X: Perfluoropentane sulfonic acid (PFPeS)	2706-91-4	0.00125 mg/kg	109	73.0	123
		EP231X: Perfluorohexane sulfonic acid (PFHxS)	355-46-4	0.00125 mg/kg	96.2	67.0	130
		EP231X: Perfluoroheptane sulfonic acid (PFHpS)	375-92-8	0.00125 mg/kg	113	70.0	132
		EP231X: Perfluorooctane sulfonic acid (PFOS)	1763-23-1	0.00125 mg/kg	91.4	68.0	136
		EP231X: Perfluorononane sulfonic acid (PFNS)	68259-12-1	0.00125 mg/kg	105	70.0	130
		EP231X: Perfluorodecane sulfonic acid (PFDS)	335-77-3	0.00125 mg/kg	92.4	59.0	134
P231B: Perfluor	roalkyl Carboxylic Acids (QCLot: 6612688)						
	Anonymous	EP231X: Perfluorobutanoic acid (PFBA)	375-22-4	0.00625 mg/kg	126	71.0	135
S2515537-001	-		2706-90-3	0.00125 mg/kg	120	69.0	132
S2515537-001		EP231X: Pertilioropentanoic acid (PEPeA)					
S2515537-001		EP231X: Perfluoropentanoic acid (PFPeA) EP231X: Perfluorohexanoic acid (PFHxA)	307-24-4	0.00125 mg/kg	117	70.0	132
S2515537-001			307-24-4 375-85-9	0.00125 mg/kg 0.00125 mg/kg	117 118	70.0	132 131
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroheptanoic acid (PFHpA)		0.00125 mg/kg			131
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA)	375-85-9		118	71.0	131 133
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluorooctanoic acid (PFOA)	375-85-9 335-67-1	0.00125 mg/kg 0.00125 mg/kg	118 109	71.0 69.0	131 133
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluorooctanoic acid (PFOA) EP231X: Perfluorononanoic acid (PFNA)	375-85-9 335-67-1 375-95-1	0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg	118 109 103	71.0 69.0 72.0	133 129
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA) EP231X: Perfluoroheptanoic acid (PFHpA) EP231X: Perfluorooctanoic acid (PFOA) EP231X: Perfluorononanoic acid (PFNA) EP231X: Perfluorodecanoic acid (PFDA)	375-85-9 335-67-1 375-95-1 335-76-2	0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg	118 109 103 97.2	71.0 69.0 72.0 69.0	131 133 129 133
S2515537-001		EP231X: Perfluorohexanoic acid (PFHxA)EP231X: Perfluoroheptanoic acid (PFHpA)EP231X: Perfluorooctanoic acid (PFOA)EP231X: Perfluorononanoic acid (PFNA)EP231X: Perfluorodecanoic acid (PFDA)EP231X: Perfluoroundecanoic acid (PFDA)EP231X: Perfluoroundecanoic acid (PFUnDA)	375-85-9 335-67-1 375-95-1 335-76-2 2058-94-8	0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg 0.00125 mg/kg	118 109 103 97.2 87.2	71.0 69.0 72.0 69.0 64.0	131 133 129 133 136

Matrix Spike (MS) Report Sub-Matrix: SOIL Spike SpikeRecovery(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number MS Concentration Low High Method: Compound EP231C: Perfluoroalkyl Sulfonamides (QCLot: 6612688) ES2515537-001 Anonymous 754-91-6 0.00125 mg/kg 114 67.0 137 EP231X: Perfluorooctane sulfonamide (FOSA) 31506-32-8 122 71.6 129 0.00312 mg/kg EP231X: N-Methyl perfluorooctane sulfonamide (MeFOSA) 4151-50-2 0.00312 mg/kg 112 69.8 131 EP231X: N-Ethyl perfluorooctane sulfonamide (EtFOSA) 24448-09-7 0.00312 mg/kg 102 68.7 130 EP231X: N-Methyl perfluorooctane sulfonamidoethanol (MeFOSE) 1691-99-2 0.00312 mg/kg EP231X: N-Ethyl perfluorooctane sulfonamidoethanol 104 65.1 134 (EtFOSE) 2355-31-9 100 63.0 144 EP231X: N-Methyl perfluorooctane sulfonamidoacetic 0.00125 ma/ka acid (MeFOSAA) 105 139 EP231X: N-Ethyl perfluorooctane sulfonamidoacetic 2991-50-6 0.00125 ma/ka 61.0 acid (EtFOSAA) EP231D: (n:2) Fluorotelomer Sulfonic Acids (QCLot: 6612688) ES2515537-001 757124-72-4 0.00125 mg/kg 145 Anonymous EP231X: 4:2 Fluorotelomer sulfonic acid (4:2 FTS) 85.1 62.0 27619-97-2 0.00125 mg/kg 103 64.0 140 EP231X: 6:2 Fluorotelomer sulfonic acid (6:2 FTS) 39108-34-4 0.00125 mg/kg 113 65.0 137 EP231X: 8:2 Fluorotelomer sulfonic acid (8:2 FTS) 120226-60-0 0.00125 mg/kg 84 7 69.2 143 EP231X: 10:2 Fluorotelomer sulfonic acid (10:2 FTS) Matrix Spike (MS) Report Sub-Matrix: WATER Spike SpikeRecoverv(%) Acceptable Limits (%) Laboratory sample ID Sample ID CAS Number Concentration MS Low High Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 6616032) ES2515535-007 Anonymous 7440-38-2 1 ma/L 111 70.0 130 EG020A-T: Arsenic 7440-43-9 0.25 mg/L 111 70.0 130 EG020A-T: Cadmium 7440-47-3 130 1 mg/L 107 70.0 EG020A-T: Chromium 7440-50-8 1 mg/L 107 70.0 130 EG020A-T: Copper 7439-92-1 130 EG020A-T: Lead 1 mg/L 98.9 70.0 7440-02-0 130 1 mg/L 104 70.0 EG020A-T[·] Nickel 7440-66-6 104 70.0 130 1 mg/L EG020A-T: Zinc EG035T: Total Recoverable Mercury by FIMS (QCLot: 6614701) ES2515554-002 Anonymous 7439-97-6 0.01 mg/L 97.4 70.0 130 EG035T: Mercury EP080/071: Total Petroleum Hydrocarbons (QCLot: 6612784) ES2515913-002 Anonymous 325 µg/L 82.2 70.0 130 EP080: C6 - C9 Fraction EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions (QCLot: 6612784) ES2515913-002 C6 C10 80.7 Anonymous EP080: C6 - C10 Fraction 375 µg/L 70.0 130 EP080: BTEXN (QCLot: 6612784) ES2515913-002 Anonymous 71-43-2 25 µg/L 77.7 70.0 130 EP080: Benzene 108-88-3 78.2 70.0 130 EP080: Toluene 25 µg/L

Page	: 15 of 15
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Sub-Matrix: WATER	D-Matrix: WATER					Matrix Spike (MS) Report					
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)				
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High				
EP080: BTEXN (QCLot: 6612784) - continued											
ES2515913-002	Anonymous	EP080: Ethylbenzene	100-41-4	25 µg/L	80.2	70.0	130				
		EP080: meta- & para-Xylene	108-38-3	25 µg/L	84.5	70.0	130				
			106-42-3								
		EP080: ortho-Xylene	95-47-6	25 µg/L	85.0	70.0	130				
		EP080: Naphthalene	91-20-3	25 µg/L	77.9	70.0	130				

QA/QC Compliance Assessment to assist with Quality Review					
Work Order	: ES2515873	Page	: 1 of 9		
Client	: WSP Australia Pty Ltd	Laboratory	: Environmental Division Sydney		
Contact	: ANDREW JACOVIDES	Telephone	: +61-2-8784 8555		
Project	: PS224991	Date Samples Received	: 28-May-2025		
Site	:	Issue Date	: 03-Jun-2025		
Sampler	: ANDREW JACOVIDES	No. of samples received	: 10		
Order number	: PS224991	No. of samples analysed	: 10		

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, where applicable to the methodology, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Matrix: SOIL

Quality Control Sample Type			Count		e (%)	Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)						
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	0	15	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)						
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	0	15	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive <u>or</u> Vinyl Chloride and Styrene are not key analytes of interest/concern.

Evaluation: * = Holding time breach ; \checkmark = Within holding time.

					Lvaluation			in noiuing time
Method		Sample Date	Extraction / Preparation			Analysis		
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)								
Soil Glass Jar - Unpreserved (EA055) BH01_0.05-0.15		27-May-2025				29-May-2025	10-Jun-2025	1
Soil Glass Jar - Unpreserved (EA055)								
BH02_0-0.1,	BH02_0.2-0.25,	27-May-2025				30-May-2025	10-Jun-2025	✓
BH02_0.3-0.35,	BH03_0-0.1,							
BH03_01-0.2,	BH04_0-0.1,							
BH04_0.1-0.3,	QA100							
EA200: AS 4964 - 2004 Identification of Asbes	tos in Soils							
Snap Lock Bag - Friable Asbestos/PSD Bag (B	EA200)							
BH01_0.05-0.15,	BH02_0-0.1,	27-May-2025				30-May-2025	23-Nov-2025	✓
BH02_0.2-0.25,	BH02_0.3-0.35,							
BH03_0-0.1,	BH03_01-0.2,							
BH04_0-0.1,	BH04_0.1-0.3							
EG005(ED093)T: Total Metals by ICP-AES								
Soil Glass Jar - Unpreserved (EG005T)								
BH01_0.05-0.15,	BH02_0-0.1,	27-May-2025	30-May-2025	23-Nov-2025	1	30-May-2025	23-Nov-2025	✓
BH02_0.2-0.25,	BH02_0.3-0.35,							
BH03_0-0.1,	BH03_01-0.2,							
BH04_0-0.1,	BH04_0.1-0.3,							
QA100								

Page	: 3 of 9
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	PS224991

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS								
Soil Glass Jar - Unpreserved (EG035T)								
BH01_0.05-0.15,	BH02_0-0.1,	27-May-2025	30-May-2025	24-Jun-2025	1	02-Jun-2025	24-Jun-2025	 ✓
BH02_0.2-0.25,	BH02_0.3-0.35,							
BH03_0-0.1,	BH03_01-0.2,							
BH04_0-0.1,	BH04_0.1-0.3,							
QA100								
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons				1	1		1	
Soil Glass Jar - Unpreserved (EP075(SIM))		07 Mar 0005	00 Mar. 0005	10 km 2025		00 Mar. 0005	00 101 0005	
BH01_0.05-0.15,	BH02_0-0.1,	27-May-2025	29-May-2025	10-Jun-2025	1	30-May-2025	08-Jul-2025	✓
BH02_0.2-0.25								
Soil Glass Jar - Unpreserved (EP075(SIM)) BH02_0.3-0.35,	BH03_0-0.1,	27-May-2025	29-May-2025	10-Jun-2025	1	31-May-2025	08-Jul-2025	1
BH02_0.3-0.35, BH03_01-0.2,	BH03_0-0.1, BH04_0-0.1,	27-Way-2020	20-may-2020	10 0011 2020	~	01-may-2020	00 001 2020	v
BH04_0.1-0.3,	QA100							
	QATOO							
EP080/071: Total Petroleum Hydrocarbons		1						
Soil Glass Jar - Unpreserved (EP080) BH01_0.05-0.15,	BH02_0-0.1,	27-May-2025	29-May-2025	10-Jun-2025	1	30-May-2025	10-Jun-2025	1
BH02 0.2-0.25,	BH02_0-0-1, BH02_0.3-0.35,	27-Way-2020	20-may-2020	10 0011 2020	v	00-may-2020	10 0011 2020	v
BH02_0.2-0.23, BH03_0-0.1,	BH02_0.3-0.3-0, BH03_01-0.2,							
BH04_0-0.1,	BH04_0.1-0.3,							
QA100	BH04_0.1-0.3,							
EP080/071: Total Recoverable Hydrocarbons - NEPM 2 Soil Glass Jar - Unpreserved (EP080)	U13 Fractions	1						
BH01_0.05-0.15,	BH02 0-0.1,	27-May-2025	29-May-2025	10-Jun-2025	1	30-May-2025	10-Jun-2025	1
BH02 0.2-0.25,	BH02_0.3-0.35,				-			•
BH03 0-0.1,	BH03_01-0.2,							
BH04_0-0.1,	BH04_0.1-0.3,							
QA100								
EP080: BTEXN			1			1	<u></u>	
Soil Glass Jar - Unpreserved (EP080)								
BH01_0.05-0.15,	BH02 0-0.1,	27-May-2025	29-May-2025	10-Jun-2025	1	30-May-2025	10-Jun-2025	1
BH02_0.2-0.25,	BH02 0.3-0.35,							Ť
BH03_0-0.1,	BH03_01-0.2,							
BH04_0-0.1,	BH04 0.1-0.3,							
QA100	_ /							

Page	: 4 of 9
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Matrix: SOIL					Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time
Method		Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)			Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP231A: Perfluoroalkyl Sulfonic Acids								
HDPE Soil Jar (EP231X) BH01_0.05-0.15, BH02_0.2-0.25, BH03_0-0.1, BH04_0-0.1, QA100	BH02_0-0.1, BH02_0.3-0.35, BH03_01-0.2, BH04_0.1-0.3,	27-May-2025	30-May-2025	23-Nov-2025	~	02-Jun-2025	09-Jul-2025	~
EP231B: Perfluoroalkyl Carboxylic Acids								
HDPE Soil Jar (EP231X) BH01_0.05-0.15, BH02_0.2-0.25, BH03_0-0.1, BH04_0-0.1, QA100	BH02_0-0.1, BH02_0.3-0.35, BH03_01-0.2, BH04_0.1-0.3,	27-May-2025	30-May-2025	23-Nov-2025	~	02-Jun-2025	09-Jul-2025	~
EP231C: Perfluoroalkyl Sulfonamides								
HDPE Soil Jar (EP231X) BH01_0.05-0.15, BH02_0.2-0.25, BH03_0-0.1, BH04_0-0.1, QA100	BH02_0-0.1, BH02_0.3-0.35, BH03_01-0.2, BH04_0.1-0.3,	27-May-2025	30-May-2025	23-Nov-2025	4	02-Jun-2025	09-Jul-2025	1
EP231D: (n:2) Fluorotelomer Sulfonic Acids								
HDPE Soil Jar (EP231X) BH01_0.05-0.15, BH02_0.2-0.25, BH03_0-0.1, BH04_0-0.1, QA100	BH02_0-0.1, BH02_0.3-0.35, BH03_01-0.2, BH04_0.1-0.3,	27-May-2025	30-May-2025	23-Nov-2025	5	02-Jun-2025	09-Jul-2025	~
EP231P: PFAS Sums		I				·		·
HDPE Soil Jar (EP231X) BH01_0.05-0.15, BH02_0.2-0.25, BH03_0-0.1, BH04_0-0.1, QA100	BH02_0-0.1, BH02_0.3-0.35, BH03_01-0.2, BH04_0.1-0.3,	27-May-2025	30-May-2025	23-Nov-2025	~	02-Jun-2025	09-Jul-2025	~

Matrix: WATER				Evaluation	× = Holding time	breach ; 🗸 = Withil	n notaing time.		
Method	Sample Date	Ex	traction / Preparation		Analysis				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation		
EG020T: Total Metals by ICP-MS									
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020A-T) Rinsate	27-May-2025	30-May-2025	23-Nov-2025	1	31-May-2025	23-Nov-2025	~		

Page	: 5 of 9
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Matrix: WATER				Evaluation	: × = Holding time	breach ; ✓ = Withi	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T) Rinsate	27-May-2025				02-Jun-2025	24-Jun-2025	1
EP080/071: Total Petroleum Hydrocarbons							
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	27-May-2025	30-May-2025	10-Jun-2025	1	30-May-2025	10-Jun-2025	~
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	27-May-2025	30-May-2025	10-Jun-2025	~	30-May-2025	10-Jun-2025	~
EP080: BTEXN							
Amber VOC Vial - Sulfuric Acid (EP080) Rinsate	27-May-2025	30-May-2025	10-Jun-2025	~	30-May-2025	10-Jun-2025	1
EP231A: Perfluoroalkyl Sulfonic Acids							
HDPE (no PTFE) (EP231X) Rinsate	27-May-2025	29-May-2025	23-Nov-2025	1	02-Jun-2025	23-Nov-2025	1
EP231B: Perfluoroalkyl Carboxylic Acids							
HDPE (no PTFE) (EP231X) Rinsate	27-May-2025	29-May-2025	23-Nov-2025	1	02-Jun-2025	23-Nov-2025	1
EP231C: Perfluoroalkyl Sulfonamides							
HDPE (no PTFE) (EP231X) Rinsate	27-May-2025	29-May-2025	23-Nov-2025	1	02-Jun-2025	23-Nov-2025	1
EP231D: (n:2) Fluorotelomer Sulfonic Acids							
HDPE (no PTFE) (EP231X) Rinsate	27-May-2025	29-May-2025	23-Nov-2025	1	02-Jun-2025	23-Nov-2025	1
EP231P: PFAS Sums							
HDPE (no PTFE) (EP231X) Rinsate	27-May-2025	29-May-2025	23-Nov-2025	1	02-Jun-2025	23-Nov-2025	~

Total Mercury by FIMS

Total Metals by ICP-MS - Suite A

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	3	20	15.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	15	13.33	10.00	1	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	1	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	9	11.11	5.00	1	NEPM 2013 B3 & ALS QC Standard
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	12	8.33	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency	not within specification ; ✓ = Quality Control frequency within specificatior
Quality Control Sample Type			ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							·
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	0	15	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard
	2. 2017	-				~	

20

4

10.00

50.00

10.00

10.00

✓

 \checkmark

EG035T

EG020A-T

2

2

NEPM 2013 B3 & ALS QC Standard

NEPM 2013 B3 & ALS QC Standard

Page	: 7 of 9
Work Order	: ES2515873
Client	: WSP Australia Pty Ltd
Project	: PS224991

Matrix: WATER				Evaluation	n: × = Quality Co	ontrol frequency	not within specification ; \checkmark = Quality Control frequency within specification .
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP) - Continued							
TRH Volatiles/BTEX	EP080	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	0	15	0.00	5.00	x	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Asbestos Identification in Soils	EA200	SOIL	AS 4964 Method for the qualitative identification of asbestos in bulk samples Analysis by Polarised Light Microscopy including dispersion staining
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	SOIL	In-house: Analysis of soils by solvent extraction followed by negative mode LC-ESI-MS/MS using MRM and isotope dilution or internal standard quantitation. A portion of homogenised sample is extracted along with isotope dilution standards (where commercially available) in a solution of ammonium acetate in acetonitrile/methanol. Where relevant, interferences from co-extracted organics are removed using dispersive clean-up media (dSPE). A portion of extract is combined with an equal volume of reagent water and filtered for instrumental analysis.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).

Analytical Methods	Method	Matrix	Method Descriptions
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Per- and Polyfluoroalkyl Substances (PFAS) by LCMSMS	EP231X	WATER	In-house: Analysis of fresh and saline waters by solid phase extraction (SPE) followed by negative mode LC-ESI-MS/MS using MRM and isotope dilution or internal standard quantitation. Isotope dilution standards (where commercially available) and surrogates are added to the sample container. The entire contents are transferred to a weak anion exchange (WAX) solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Data quality objectives for internal standard recoveries are based on US EPA method 1633.
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
QuECheRS Extraction of Solids	ORG71	SOIL	In house: Sequential extractions with Acetonitrile/Methanol by shaking. Extraction efficiency aided by the addition of salts under acidic conditions. Where relevant, interferences from co-extracted organics are removed with dispersive clean-up media (dSPE). The extract is either diluted or concentrated and exchanged into the analytical solvent.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.
Solid Phase Extraction (SPE) for PFAS in water	ORG72	WATER	In-house: Isotopically labelled analogues of target analytes used as internal standards and surrogates are added to the sample container. The entire contents are transferred to a solid phase extraction (SPE) cartridge. The sample container is successively rinsed with aliquots of the elution solvent. The eluted extract is combined with an equal volume of reagent water and a portion is filtered for analysis. Method procedures conform to US DoD QSM 5.3, table B-15 requirements.

Appendix F Analytical Tables

				Tota	l Petroleun	n Hydrocar	bons								BTE	XN			
지 TRH C6 - C9 Fraction	품 전 편 전	지 TRH C15 - C28 Fraction	쪽 전 제	표 TRH+C10 - C36 (Sum of botton) (Lab Reported)		. TRH C6 - C10 Fraction জ F1			TRH >C10 - C16 Fraction Less Naphthalene F2	B TRH >C16 - C34 B Fraction F3	없 TRH >C34 - C40 화 Fraction F4	Benzene mg/kg	Toluene mg/kg	gy/gg	Xylenes (m & p)	ଅ ଅନୁ ଅଧି	없 Xylenes (Sum of total) 統 (Lab Reported)	정 제 Naphthalene (VOC)	By/BTEX
10	50	100	100	50	50	10	10	50	50	100	100	0.2	0.5	0.5	0.5	0.5	0.5	1	0.2
											,,,							-	
							45		110			0.5	160	55			40	3	
						700		1000		2500	10000								

Project ID	Field ID	Date	Lab Report Number																				
PS224991	BH01_0.05-0.15	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH02_0-0.1	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH02_0.2-0.25	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH02_0.3-0.35	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH03_0-0.1	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH03_01-0.2	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH04_0-0.1	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	BH04_0.1-0.3	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2
PS224991	QA100	27-05-2025	ES2515873	<10	<50	<100	<100	<50	<50	<10	<10	<50	<50	<100	<100	<0.2	<0.5	<0.5	<0.5	<0.5	<0.5	<1	<0.2

Statistics

mber of Detects	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
ximum Detect	ND																			

ND: not detected

Environmental Standards

NEPM 2013 Table 1A(1) HILs Res B Soil

EQL NEPM 2013 Table 1A(1) HILs Res B Soil

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

NEMP 2023 Table 1B(7) Management Limits for TPH, residential/parkland/public open space

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand, 0 m to < 1 m NEMP 2023 Table 1B(7) Management Limits, coarse grained soil PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

HEPA, March 2025, PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

								Polycy	clic aroma	tic hydroca	rbons								
ay/8 Acenaphthene	ay/a Acenaphthylene	B Anthracene 협	응 정 정	Benzo(a)pyrene	Benzo(a)pyrene TEQ Kational)*	Benzo(a)pyrene TEQ Katium bound)*	Benzo(a)pyrene TEQ Kate (upper bound)*				gy/gg	Dibenz(a,h)anthracene	Eluoranthene	Eluorene mg/kg		Naphthalene	Phenanthrene Ba/ ^g	eueu A mg/kg	PAH (Sum of Common 16 PAHs - Lab Reported)
												mg/kg	mg/kg			mg/kg			mg/kg
0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
						4													400
																3			

Project ID	Field ID	Date	Lab Report Number																				
PS224991	BH01_0.05-0.15	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH02_0-0.1	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH02_0.2-0.25	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH02_0.3-0.35	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH03_0-0.1	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH03_01-0.2	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH04_0-0.1	27-05-2025	ES2515873	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	0.6	1.2	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PS224991	BH04_0.1-0.3	27-05-2025	ES2515873	<0.5	<0.5	<0.5	0.7	1.0	1.2	1.5	1.8	1.0	0.7	<0.5	0.8	<0.5	1.8	<0.5	0.5	<0.5	0.6	1.8	8.9
PS224991	QA100	27-05-2025	ES2515873	<0.5	<0.5	<0.5	0.6	0.8	1.0	1.2	1.6	0.8	0.6	<0.5	0.6	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	1.4	6.1
PS224991	QA100	27-05-2025	ES2515873	<0.5	<0.5	<0.5	0.6	0.8	1.0	1.2	1.6	0.8	0.6	<0.5	0.6	<0.5	1.3	<0.5	<0.5	<0.5	<0.5	1	.4

Statistics

Number of Detects 0 0 0 2 2 9 9 2 2 0 2 0 1 0 1 2 2 Maximum Detect ND ND ND 0.7 1 1.2 1.5 1.8 1 0.7 ND 0.8 ND 1.8 ND 0.6 1.8 8.9	Number of Detecto		•	•	-			•	•						2	•					
Maximum Detect ND ND ND 0.7 1 1.2 1.5 1.8 1 0.7 ND 0.8 ND 1.8 ND 0.6 1.8 8.9	Number of Detects	<u> </u>	U	U	2	2	2	9	9	2	2	0	2	U	2	0		<u> </u>		2	2
	Maximum Detect		ND	ND	0.7	1	1.2	1.5	1.8	1	0.7	ND	0.8		1.8	ND	0.5		0.6	1.8	8.9

ND: not detected

Environmental Standards

NEPM 2013 Table 1A(1) HILs Res B Soil

EQL NEPM 2013 Table 1A(1) HILs Res B Soil

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand, 0 m to < 1 m NEMP 2023 Table 1B(7) Management Limits, coarse grained soil PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

NEMP 2023 Table 1B(7) Management Limits for TPH, residential/parkland/public open space

HEPA, March 2025, PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

			Asbestos						Heavy	Metals						PF	AS		
	Asbestos (1-Detect or <1-Non-Detect)	Asbestos (Trace)	Synthetic Mineral Fibre	Organic Fibres - Comment	Sample weight (dry)	Arsenic	Cadmium	Chromium	Copper	Lead	Mercury	Nickel	Zinc	Perfluorononanesulfon ic acid (PFNS)	Perfluoropropanesulfo nic acid (PFPrS)	Perfluorodecane sulfonic acid (PFDS)	N-Methyl PFO sulfonamidoethanol (MeFOSE)	N-methyl-PFO sulfonamidoacetic acid (MeFOSAA)	Perfluorooctanoic Acid (PFOA)
	-	-	-	-	g	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.1				0.01	5	1	2	5	5	0.1	2	5	0.0002	0.0005	0.0002	0.0005	0.0002	0.0002
NEPM 2013 Table 1A(1) HILs Res B Soil						500	150	500	30,000	1,200	120	1,200	60,000						
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand, 0 m to < 1 m																			
NEMP 2023 Table 1B(7) Management Limits, coarse grained soil																			
PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access																			20

Field ID	Date	Lab Report Number																			
BH01_0.05-0.15	27-05-2025	ES2515873	ND	ND	ND	ND	98.1	<5	<1	14	91	220	<0.1	6	126	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH02_0-0.1	27-05-2025	ES2515873	ND	ND	ND	ND	66.4	12	<1	18	26	17	<0.1	9	60	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH02_0.2-0.25	27-05-2025	ES2515873	ND	ND	ND	ND	88.1	11	<1	18	6	6	<0.1	<2	9	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH02_0.3-0.35	27-05-2025	ES2515873	ND	ND	ND	ND	81.2	<5	<1	5	186	15	<0.1	2	34	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH03_0-0.1	27-05-2025	ES2515873	ND	ND	ND	ND	66.2	5	<1	10	33	65	0.1	5	123	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH03_01-0.2	27-05-2025	ES2515873	ND	ND	ND	ND	94.6	<5	<1	6	57	30	<0.1	2	156	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH04_0-0.1	27-05-2025	ES2515873	ND	ND	ND	ND	69.4	<5	<1	6	40	42	<0.1	4	152	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
BH04_0.1-0.3	27-05-2025	ES2515873	ND	ND	ND	ND	143	<5	<1	5	129	96	0.2	4	254	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
QA100	27-05-2025	ES2515873	-	-	-	-	-	<5	<1	5	146	82	0.2	4	218	<0.0002	<0.0005	<0.0002	<0.0005	<0.0002	<0.0002
	BH01_0.05-0.15 BH02_0-0.1 BH02_0.2-0.25 BH03_0-0.1 BH03_01-0.2 BH04_0-0.1 BH04_0.1-0.3	BH01_0.05-0.15 27-05-2025 BH02_0-0.1 27-05-2025 BH02_0.2-0.25 27-05-2025 BH02_0.3-0.35 27-05-2025 BH03_0-0.1 27-05-2025 BH03_01-0.2 27-05-2025 BH03_01-0.2 27-05-2025 BH04_0-0.1 27-05-2025 BH04_0.1-0.3 27-05-2025	BH01_0.05-0.15 27-05-2025 ES2515873 BH02_0-0.1 27-05-2025 ES2515873 BH02_0.2-0.25 27-05-2025 ES2515873 BH02_0.3-0.35 27-05-2025 ES2515873 BH03_0-0.1 27-05-2025 ES2515873 BH03_01-0.2 27-05-2025 ES2515873 BH04_0-0.1 27-05-2025 ES2515873 BH04_0.1-0.3 27-05-2025 ES2515873	BH01_0.05-0.15 27-05-2025 ES2515873 ND BH02_0-0.1 27-05-2025 ES2515873 ND BH02_0.2-0.25 27-05-2025 ES2515873 ND BH02_0.3-0.35 27-05-2025 ES2515873 ND BH03_0-0.1 27-05-2025 ES2515873 ND BH03_01-0.2 27-05-2025 ES2515873 ND BH04_0-0.1 27-05-2025 ES2515873 ND BH04_0.1-0.3 27-05-2025 ES2515873 ND	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND BH02_0-0.1 27-05-2025 ES2515873 ND ND BH02_0.2-0.25 27-05-2025 ES2515873 ND ND BH02_0.2-0.25 27-05-2025 ES2515873 ND ND BH02_0.3-0.35 27-05-2025 ES2515873 ND ND BH03_0-0.1 27-05-2025 ES2515873 ND ND BH03_01-0.2 27-05-2025 ES2515873 ND ND BH04_0-0.1 27-05-2025 ES2515873 ND ND BH04_0.1-0.3 27-05-2025 ES2515873 ND ND	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND BH02_0.2-0.25 27-05-2025 ES2515873 ND ND ND ND BH02_0.3-0.35 27-05-2025 ES2515873 ND ND ND ND BH03_0-0.1 27-05-2025 ES2515873 ND ND ND ND BH03_01-0.2 27-05-2025 ES2515873 ND ND ND BH04_0-0.1 27-05-2025 ES2515873 ND ND ND BH04_0.1-0.3 27-05-2025 ES2515873 ND ND ND	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND ND BH02_0-0.1 27-05-2025 ES2515873 ND ND	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND ND 66.4 BH02_0.2-0.25 27-05-2025 ES2515873 ND ND ND ND 88.1 BH02_0.3-0.35 27-05-2025 ES2515873 ND ND ND ND 81.2 BH03_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.2 BH03_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.2 BH03_01-0.2 27-05-2025 ES2515873 ND ND ND ND 94.6 BH04_0-0.1 27-05-2025 ES2515873 ND ND ND 69.4 BH04_0.1-0.3 27-05-2025 ES2515873 ND ND ND ND 143	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.4 12 BH02_0.2-0.25 27-05-2025 ES2515873 ND ND ND ND 88.1 11 BH02_0.3-0.35 27-05-2025 ES2515873 ND ND ND ND 81.2 <5	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 <0.002 BH02_0-0.1 27-05-2025 ES2515873 ND ND ND ND 66.4 12 <1	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 <0.002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <	BH01_0.05-0.15 27-05-2025 E52515873 ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002 <0.0002	BH01_0.05-0.15 27-05-2025 ES2515873 ND ND ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 <0.002 <0.005 <0.002 <0.005 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	BH01_0.05-0.15 27-05-2025 E52515873 ND ND ND 98.1 <5 <1 14 91 220 <0.1 6 126 <0.002 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005 <0.0005

Statistics

Number of Detects	8	8	8	8	-	3	0	9	9	9	3	8	9	0	0	0	0	0	0
Maximum Detect	0	0	0	0	-	12	ND	18	186	220	0.2	9	254	ND	ND	ND	ND	ND	ND

ND: not detected

Environmental Standards

NEPM 2013 Table 1A(1) HILs Res B Soil

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

NEMP 2023 Table 1B(7) Management Limits for TPH, residential/parkland/public open space

HEPA, March 2025, PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

											PFAS										
	Perfluorooctane sulfonic acid (PFOS)	Perfluorohexane sulfonic acid (PFHxS)	Sum of PFHxS and PFOS (lab reported)	Sum of WA DER PFAS (n=10)	Sum of PFAS	Perfluorobutanoic acid (PFBA)	Perfluorohexanoic acid (PFHxA)	Perfluoroheptanoic acid (PFHpA)	Perfluorodecanoic acid (PFDA)	Perfluoropentanoic acid (PFPeA)	Perfluorononanoic acid (PFNA)	Perfluorotetradecanoic acid (PFTeDA)	Perfluorotridecanoic acid (PFTrDA)	Perfluorododecanoic acid (PFDoDA)	Perfluoroundecanoic acid (PFUnDA)	Perfluoroheptane sulfonic acid (PFHpS)	Perfluoropentane sulfonic acid (PFPeS)	Perfluorobutane sulfonic acid (PFBS)	4:2 Fluorotelomer sulfonic acid (4:2 FTS)	6:2 Fluorotelomer sulfonic acid (6:2 FTSA)	8:2 Fluorotelomer sulfonic acid (8:2 FTSA)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.0002	0.0002	0.0002	0.0002	0.0002	0.001	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0005	0.0005	0.0005
NEPM 2013 Table 1A(1) HILs Res B Soil																					
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand, 0 m to < 1 m																					
NEMP 2023 Table 1B(7) Management Limits, coarse grained soil																					
PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access			2																		

Project ID	Field ID	Date	Lab Report Number																					
PS224991	BH01_0.05-0.15	27-05-2025	ES2515873	0.0003	<0.0002	0.0003	0.0003	0.0003	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH02_0-0.1	27-05-2025	ES2515873	0.0003	<0.0002	0.0003	0.0003	0.0003	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH02_0.2-0.25	27-05-2025	ES2515873	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH02_0.3-0.35	27-05-2025	ES2515873	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH03_0-0.1	27-05-2025	ES2515873	0.0004	<0.0002	0.0004	0.0004	0.0004	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH03_01-0.2	27-05-2025	ES2515873	0.0002	<0.0002	0.0002	0.0002	0.0002	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH04_0-0.1	27-05-2025	ES2515873	0.0006	<0.0002	0.0006	0.0006	0.0006	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	BH04_0.1-0.3	27-05-2025	ES2515873	0.0003	<0.0002	0.0003	0.0005	0.0005	<0.001	<0.0002	<0.0002	<0.0002	0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005
PS224991	QA100	27-05-2025	ES2515873	0.0002	<0.0002	0.0002	0.0002	0.0002	<0.001	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	<0.0005	<0.0005	<0.0005

Statistics

Number of Detects	7	0	7	7	7	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Maximum Detect	0.0006	ND	0.0006	0.0006	0.0006	ND	ND	ND	ND	0.0002	ND										

ND: not detected

Environmental Standards

NEPM 2013 Table 1A(1) HILs Res B Soil

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

NEMP 2023 Table 1B(7) Management Limits for TPH, residential/parkland/public open space

HEPA, March 2025, PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

			PF	AS		
	10:2 Fluorotelomer sulfonic acid (10:2	N-Ethyl PFO sulfonamide (EtFOSA)	N-Ethyl PFO sulfonamidoethanol (EtFOSE)	N-Methyl PFO sulfonamide (MeFOSA)	Perfluorooctane sulfonamide (FOSA)	N-ethyl-PFO sulfonamidoacetic acid (EtFOSAA)
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
EQL	0.0005	0.0005	0.0005	0.0005	0.0002	0.0002
NEPM 2013 Table 1A(1) HILs Res B Soil	i i i i i i i i i i i i i i i i i i i					
NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand, 0 m to < 1 m						
NEMP 2023 Table 1B(7) Management Limits, coarse grained soil						
PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access						

Project ID	Field ID	Date	Lab Report Number	_					
PS224991	BH01_0.05-0.15	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH02_0-0.1	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH02_0.2-0.25	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH02_0.3-0.35	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH03_0-0.1	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH03_01-0.2	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH04_0-0.1	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	BH04_0.1-0.3	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002
PS224991	QA100	27-05-2025	ES2515873	<0.0005	<0.0005	<0.0005	<0.0005	<0.0002	<0.0002

Statistics

	•	•	0	0	0	0
Maximum Detect ND	ND	ND	ND	ND	ND	ND

ND: not detected

Environmental Standards

NEPM 2013 Table 1A(1) HILs Res B Soil

NEPM 2013 Table 1A(3) Res A/B Soil HSL for Vapour Intrusion, Sand

NEMP 2023 Table 1B(7) Management Limits for TPH, residential/parkland/public open space

HEPA, March 2025, PFAS NEMP 2025 HIL B Residential with minimal opportunity for soil access

TABLE F2RINSATE BLANK ANALYIS RESULTS

		Date Lab Report Number	27-05-2025 ES2515873
		Matrix Type	Water
	Unit	EQL	
Fotal Petroleum Hydrocarbons			
TRH C6 - C9 Fraction	mg/L	0.02	<0.02
TRH C6 - C10 Fraction F1	mg/L	0.02	<0.02
TRH C6 - C10 Fraction Less BTEX F1	mg/L	0.02	<0.02
BTEXN	<i></i>		
Benzene	mg/L	0.001	<0.001
Toluene	mg/L	0.002	<0.002
Ethylbenzene Xylenes (m & p)	mg/L mg/L	0.002	<0.002 <0.002
Xylene (o)	mg/L mg/L	0.002	<0.002
Xylenes (Sum of total) (Lab	iiig/ L	0.002	<0.002
Reported)	mg/L	0.002	<0.002
Naphthalene (VOC)	mg/L	0.005	<0.002
Total BTEX	mg/L	0.001	<0.001
leavy Metals			
Arsenic	mg/L	0.001	<0.001
Cadmium	mg/L	0.0001	<0.0001
Chromium	mg/L	0.001	<0.001
Copper	mg/L	0.001	<0.001
Lead	mg/L	0.001	<0.001
Mercury	mg/L	0.0001	<0.0001
Nickel	mg/L	0.001	<0.001
Zinc	mg/L	0.005	<0.005
er- and polyfluoroalkyl substances (PFA			
Perfluorononanesulfonic acid (PFNS)	ug/L	0.02	<0.02
Perfluoropropanesulfonic acid	ug/ L	0.02	<0.02
(PFPrS)	ug/L	0.02	<0.02
Perfluorodecane sulfonic acid (PFDS)	ug/L	0.02	<0.02
Perfluoro-n-hexadecanoic acid	ug/L	0.05	<0.05
N-Methyl PFO sulfonamidoethanol (MeFOSE)		0.05	-0.05
N-methyl-PFO sulfonamidoacetic	ug/L	0.05	<0.05
acid (MeFOSAA)	ug/L	0.02	<0.02
Perfluorooctanoic Acid (PFOA)	ug/L ug/L	0.02	<0.02
	ug/ L	0.01	<0.01
Perfluorooctane sulfonic acid (PFOS)	ug/L	0.01	<0.01
Perfluorohexane sulfonic acid	ug/L	0.01	<0.01
(PFHxS)	ug/L	0.01	<0.01
Sum of PFHxS and PFOS (lab	ug/ L	0.01	<0.01
reported)	ug/L	0.01	<0.01
Sum of WA DER PFAS (n=10)	ug/L	0.01	<0.01
Sum of PFAS	ug/L	0.01	<0.01
Perfluorobutanoic acid (PFBA)	ug/L	0.01	<0.01
Perfluorohexanoic acid (PFBA)	ug/L	0.02	<0.1
Perfluoroheptanoic acid (PFHpA)	ug/L	0.02	<0.02
Perfluorodecanoic acid (PFDA)	ug/L	0.02	<0.02
Perfluoropentanoic acid (PFPeA)	ug/L	0.02	<0.02
Perfluorononanoic acid (PFNA)	ug/L	0.02	<0.02
Perfluorotetradecanoic acid	0/ -		+0.0Z
(PFTeDA)	ug/L	0.05	<0.05
Perfluorotridecanoic acid (PFTrDA)	ug/L	0.02	<0.03
Perfluorododecanoic acid (PFDoDA)	ug/L	0.02	<0.02
Perfluoroundecanoic acid (PFUnDA)	ug/L	0.02	<0.02
Perfluoroheptane sulfonic acid			
(PFHpS)	ug/L	0.02	<0.02
Perfluoropentane sulfonic acid (PFPeS)	ug/L	0.02	<0.02
/			NU.UZ
Perfluorobutane sulfonic acid (PFBS)	ug/L	0.02	<0.02
4:2 Fluorotelomer sulfonic acid (4:2			
FTS)	ug/L	0.05	<0.05

TABLE F2RINSATE BLANK ANALYIS RESULTS

		Date	27-05-2025
		Lab Report Number	ES2515873
		Matrix Type	Water
	Unit	EQL	
6:2 Fluorotelomer sulfonic acid (6:2			
FTSA)	ug/L	0.05	<0.05
8:2 Fluorotelomer sulfonic acid (8:2			
FTSA)	ug/L	0.05	<0.05
10:2 Fluorotelomer sulfonic acid			
(10:2 FTSA)	ug/L	0.05	<0.05
N-Ethyl PFO sulfonamide (EtFOSA)	ug/L	0.05	<0.05
N-Ethyl PFO sulfonamidoethanol			
(EtFOSE)	ug/L	0.05	<0.05
N-Methyl PFO sulfonamide			
(MeFOSA)	ug/L	0.05	<0.05
Perfluorooctane sulfonamide (FOSA)	ug/L	0.02	<0.02
N-ethyl-PFO sulfonamidoacetic acid			
(EtFOSAA)	ug/L	0.02	<0.02

Page 2 of 2